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Abstract—Continuous integration is widely adopted in software projects to reduce the time it takes to deliver the changes to the

market. To ensure software quality, developers also run regression test cases in a continuous fashion. The CI practice generates

commit-by-commit software evolution data that provides great opportunities for future testing research. However, such data is often

unavailable due to space limitation (e.g., developers only keep the data for a certain period) and the significant effort involved in re-

running the test cases on a per-commit basis. In this paper, we present T-Evos, a dataset on test result and coverage evolution,

covering 8,093 commits across 12 open-source Java projects. Our dataset includes the evolution of statement-level code coverage for

every test case (either passed and failed), test result, all the builds information, code changes, and the corresponding bug reports. We

conduct an initial analysis to demonstrate the overall dataset. In addition, we conduct an empirical study using T-Evos to study the

characteristics of test failures in CI settings. We find that test failures are frequent, and while most failures are resolved within a day,

some failures require several weeks to resolve. We highlight the relationship between code changes and test failure, and provide

insights for future automated testing research. Our dataset may be used for future testing research and benchmarking in CI. Our

findings provide an important first step in understanding code coverage evolution and test failures in a continuous environment.

Index Terms—Evolution and maintenance, mining software repositories, software testing

Ç

1 INTRODUCTION

SOFTWARE systems are continuously evolving. To ensure
system quality, developers nowadays often execute

regression tests in a continuous integration (CI) setting. In
CI, for every commit or a small set of code changes, devel-
opers would execute all the test cases to check whether the
new code changes have caused any test failure. Therefore,
when a test failure happens, developers may investigate the
most recent code changes to identify the cause. Different
from traditional software testing practices, which only run
all the test cases before releases, CI allows developers to
reduce the needed time to deliver the changes to the clients
by catching test failures as early as possible and reducing
integration overhead.

Prior studies have proposed various automated testing
techniques that leverage code coverage or test execution
information to assist developers with test failure diagnosis or
repair. For example, researchers have proposed using code
coverage information in failed test cases for tasks such as bug
localization [1], [2], [3], [4], [5] and automated program

repair [6], [7], [8]. These studies rely on the general assump-
tion that the buggy code may be related to the execution path
of a failed test case. However, most of prior techniques only
consider snapshots of the project, while in CI settings, the
code changes are integrated and tested continuously. The
evolution data (e.g., recent code and coverage changes) may
provide additional values that can help improve automated
testing techniques andCI testing practices.

To help facilitate software testing research, many research-
ers have created several datasets and benchmarks. Just et al.
[9] created the Defects4J benchmark that contains failed test
cases caused by real bugs, code coverage of the failing test
cases, and the corresponding fixes. Lin et al. [10] presented
theQuixBugs benchmark that contains both passed and failed
test cases of known bugs. Le Goues et al. [11] presented the
ManyBugs and IntroClass datasets that allow researchers to
reproduce many real-world bugs and benchmark automated
program repair techniques. Elbaum et al.[12] collected test
execution result over time at Google. Although these datasets
provide great benefits to the research community, they also
have common limitations. The datasets only provide a clean
snapshot of the projects: namely, selected bugs, their fixes,
and the corresponding code coverage. Yet, there is no project
evolution information, such as how the code coverage evolves
and the relationship between recent code changes and test
failures, which is crucial in CI settings.

In this paper, we present T-Evos, a dataset that contains
the evolution of test execution information across 12 Java
projects over the course of 8,093 commits. For every commit,
T-Evos contains the code coverage at the statement level
(i.e., the specific lines that are covered), test status (i.e., pass
or fail), build log, test execution stack traces, and code
changes. To execute the test cases and generate individual
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test case coverage, we need to ensure that all the studied
projects can successfully compile. To that end, we manually
resolve the compilation issues, and then integrate the reso-
lution into automation scripts. For each studied project, we
also automate the manual process of adding project-specific
configurations to collect code coverage. In total, we spent
hundreds of hours resolving the issues that we encountered
when executing the test cases. The size of the resulting data-
set is around 3.3 TB and took over 10 CPU years to generate.
Different from prior datasets, T-Evos provides a fine-
grained dataset on the evolution of test execution in CI set-
tings, which may be used by future research that aims to
leverage such continuous information to improve auto-
mated testing techniques.

We also conduct an empirical study using T-Evos to
study the characteristics of test failures in CI settings. In par-
ticular, we answer the four following research questions
(RQs):

RQ1: How often do test failure instances occur?We find that,
on average, 34% of the studied commits contain test failures.
Among the test failure instances, 44% are non-flaky test fail-
ure instances. The same test failure might occur multiple
times, and most failures are concentrated in a small set of
test cases.

RQ2: How long does it take for developers to fix a test failure?
We find that while most test failures are resolved within
one day, some test failures require several weeks to resolve.
Future studies may use T-Evos to study the characteristics
of the test failures and understand the factors that affect fail-
ure resolution time.

RQ3: How does the code change when the test failure first hap-
pens? We find that 18% of the test failures are related to
modified or added test files that contain the failed test cases.
We also find that when the test failures are first introduced,
the test execution may stop prematurely when it encounters
a failure in test files, which results in a decrease in code
coverage.

RQ4: How does the code change when the test failure is
resolved? We find that developers often resolve test failures
by modifying non-code files (21%) or only test files (14%).
We also find that there is only an average of 66% overlap
between the files modified in failure-resolving commits and
files executed in the failing commits. Moreover, when
developers resolve the test failure, the failure-resolving
changes do not always alter code coverage, even though the
changes modify source code or test files.

We present the key contributions of this work as follows:

� We present T-Evos, a new dataset that contains infor-
mation on how tests were executed in CI environ-
ments. To the best of our knowledge, T-Evos is the
first dataset to show code coverage data in a continu-
ous fashion.

� We conducted an empirical study on the test failures
collected in T-Evos. The results may help future
research understand the characteristics of test fail-
ures, such as their prevalence and persistence over
time.

� Our results also highlight the relationship between
code changes and test failure, and provide insights
for future automated testing research.

� We summarized and discussed some potential
future research directions that may be done using T-
Evos.

Paper Organization. Section 2 discusses our test execution
and data collection process. Sections 3 and 4 present the
motivation, approach, and findings of our research ques-
tions. Section 5 discusses future research directions. Sec-
tion 6 discusses threats to validity. Section 7 presents the
related work. Finally, Section 8 concludes the paper.

2 TEST EXECUTION AND DATA COLLECTION

Continuous Integration is widely adopted in software evo-
lution and most prior studies focus on test analysis at the
release level or do not contain test execution information
(e.g., code coverage) [9], [11], [12], [13]. However, there
exists no dataset that collects fine-grained code coverage in
a continuous environment (i.e., commit by commit over a
period of time). Such dataset can benefit researchers in con-
ducting various software studies (e.g., provide a realistic
continuous integration setting, or develop a new technique
that leverages the development evolution). Therefore, our
goals are: 1) to provide a dataset that contains continuous
test execution of statement level at the commit-level, which
could be used for future research and benchmarking; 2) to
conduct an empirical analysis on test failure and resolution
in a CI environment, which may inspire future research on
how to better leverage the code evolution information (e.g.,
code changes in prior commits) to assist developers in vari-
ous aspects, such as improving test failure diagnose, quality
assurance, and CI practices (particularly in testing).

Although many projects may execute test cases in a con-
tinuous fashion, the recorded code coverage data mostly
contains only general coverage results (e.g., the branch cov-
erage) without knowing which code statements were exe-
cuted. Moreover, such code coverage data is only kept for a
small period of time [14]. Thus, to achieve the goals, we
need to execute the test cases for every commit, collect the
individual code coverage for each test case, and analyze the
changes between commits. To collect the code coverage at
the statement level for each commit of the studied projects,
our approach consists of three steps, as illustrated in Fig. 1.
First, for every commit, we build (i.e., compile) the project
with the Maven Surefire plugin [15] to identify a list of test
cases for each studied project. We need to perform this step

Fig. 1. An overview of our data collection process and the collected data.
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for every commit because there may be newly added test
cases, and some test cases may be deleted or disabled [16],
[17]. We then execute the identified test cases, and analyze
the code coverage information using JaCoCo [18] for the
individual test case. Finally, some test cases may be flaky
(i.e., sometimes pass and sometimes fail). Flaky tests can
introduce biases in the dataset when analyzing test fail-
ure [19], [20], [21], [22]. To reduce the bias, we detect and
remove such flaky tests from the dataset [23].

The overall process is challenging and requires a signifi-
cant amount of both manual and computing effort, because
1) a project may contain thousands of test cases and we
need to run each test case for every commit to collect all the
statement-level coverage information; 2) To make each test
case run, we need to manually resolve many compilation
issues. Below, we discuss our data collection, test execution
process, and the associated challenges in detail.

2.1 Test Case Identification and Execution

Studied Projects.We select 10 projects that are also used in the
Defects4J benchmark [9] for our study.We choose these proj-
ects because Defects4J is widely used and the research com-
munity is familiar with the projects. Note that, the data in
Defects4J only contains snapshots of a subset of the test exe-
cution (e.g., the failing test cases before a bug is fixed), while
our goal is to collect continuous test execution and failure
data on a per-commit basis. To increase the diversity of the
studied projects, our study includes additional projects (i.e.,
fastjson and junit4) of different software foundations. We
query the top Java Maven projects on GitHub based on the
number of GitHub Stars. The two projects, fastjson and
junit4, have 23.7 k and 8.2 k GitHub Stars, respectively. The
selected projects are well-maintained and contain active
tests. We also manually verify that the selected projects can
be successfully built and the test cases can be executed. In
total, we conduct our study on 12 projects and Table 1
presents their details. For each project, we execute the test
cases in all the commits (i.e., code changes) specified in the
time range shown in Table 1. On average, each commit exe-
cutes from 230 to over 4,000 test cases.We study the 1,000 lat-
est commits at the time when our analysis is conducted. We
chose to study 1,000 commits in each project because it is a

relatively large number, but still feasible for us to manually
resolve compilation issues. Based on the first and last commit
of the 1,000 commits, we then compute the start and end date
of our study. In other words, the time range refers to the time
between the latest commit (at the time of our data collection)
to 1,000 commits prior to it. We determine those commits by
executing the “git log -n 1000” command. Note that for
the project commons-cli, the repository only contains 965
commits at the time of the study.

Handling Compilation Issues. Compiling the projects is not
always straightforward. We perform the following steps to
ensure that we can compile the projects and execute test
cases in the studied commits. First, each project requires a
considerable number of manual configurations to success-
fully compile. For instance, some projects may require a spe-
cific version of Java Runtime or Java Development Kit
(JDK). Therefore, to automate the compilation and test exe-
cution process, we manually resolve all the compilation
issues that we encounter and integrate the resolution in the
automation scripts (e.g., changing JDK versions if needed).
Second, some projects may not use JaCoCo [18] for code
coverage analysis, so we need to manually configure the
maven build script to add the JaCoCo dependency. Since
the projects may have multiple modules, we need to iden-
tify all the maven build scripts when adding the JaCoCo
dependence. Moreover, most of the studied projects use a
handful of third-party libraries, so there may be other
dependency issues that require manual fixes (e.g., some
libraries are no longer available in the central Maven reposi-
tory and need to be manually downloaded). We manually
resolve the issues and update our automation scripts
accordingly. Finally, even after the projects are successfully
compiled, there may still be commit-specific configuration
that prevents the test cases from executing. For instance,
developers might refactor the structure of the configuration
file (i.e., pom.xml) that specifies the dependencies. Thus, we
need to modify our code accordingly to add the JaCoCo
dependency. It took hundreds of hours of manual effort to
resolve the compilation issues. Although we tried our best
to resolve compilation issues, some commits may not be
compilable even after we tried to manually resolve the
issues due to reasons such as lack of dependencies. In total,
we were able to successfully compile 8,093 commits.

TABLE 1
An Overview of the Studied Projects, Where Total LOC is the Total Lines of Code, Test LOC (%) is the Line of Test Code, and Its

Percentage Over Total Lines of Code and Average Test Cases Shows the Average Number of Test Cases Per Commit

Project Total LOC Test LOC (%) Date range Avg test cases Studied Compiled

(Start, End) per commit commits commits

commons-cli 12.2k 4.3k (35%) (2002/06/10, 2020/09/19) 362 965 558
commons-codec 30.9k 14.6k (47%) (2012/08/20, 2020/10/11) 799 1,000 709
commons-compress 65.8k 23.1k (35%) (2017/01/07, 2020/10/13) 1,006 1,000 337
commons-csv 10.3k 7.2 k(70%) (2013/03/20, 2020/10/03) 230 1,000 936
commons-math 199.2k 76.0 k(38%) (2015/04/26, 2020/08/10) 4,200 1,000 551
gson 38.4k 15.2 k(40%) (2011/03/29, 2020/05/13) 1,103 1,000 942
jackson-core 50.8k 19.0 k(37%) 2014/12/05, 2019/12/30) 320 1,000 453
jackson-dataformat-xml 564.7k 7.6 k(1%) (2014/11/12, 2020/10/16) 270 1,000 203
jfreechart 159.1k 40.0 k(25%) (2013/08/15, 2020/03/10) 2,477 1,000 439
jsoup 86.8k 9.4 k(11%) (2011/07/02, 2020/03/07) 532 1,000 990
junit4 37.9k 20.4 k(54%) (2013/02/05, 2021/02/13) 826 1,000 997
fastjson 354.6k 138.0 k(39%) (2018/09/03, 2021/04/05) 4,768 1,000 978
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Identifying Test Cases. After we successfully compile the
projects, our next step is to identify a list of test cases that
we need to execute. As found by Kim et al.[17], developers
may disable some test cases during development. Therefore,
we need to first identify the test cases that are active and
will be executed in the continuous integration process. Since
all the studied projects use Maven as the build system, we
track the list of active test cases by compiling the projects
using the Maven Surefire plugin [15]. More specifically,
when the project is built and compiled, the Maven test and
verify lifecycles execute the unit and integration tests,
respectively. Once the test cases are executed, the Surefire
plugin then generates a surefire-reports folder containing the
information of all the executed test suites (i.e., test class) in
XML format. We then parse the XML files to identify the list
of test cases (e.g., test methods annotated with @Test in the
test class) that belong to each executed test suite.

Executing the Test Cases. Since we have 12 studied projects
and each with hundreds of commits to compile and run test
cases, we used six servers to speed up the execution. All the
servers have the same hardware specification: a four-core
Intel Xeon (Skylake, IBRS) CPU (2.10 GHz) and 5 GB of
RAM. Four of the servers ran Ubuntu 20.04, while the other
two ran Ubuntu 18.04. To collect the coverage of each indi-
vidual test case, we need to run each test case one-by-one.
Therefore, we implement scripts to automate the process of
checking out a commit (i.e., in a Git repository), updating
the Maven build file to include needed dependencies such
as JaCoCo [18], compiling the project, and running each
individual test case separately. We need to run each test
case separately because JaCoCo only generates statement
level coverage information (i.e., which specific lines a test
case covers) when the test cases are executed one-by-one.
To avoid dirty states that may affect the test result, we also
automate test cleanup before and after running each test
case. Note that we re-executed test cases in different servers
to make sure that the nature of the failures is not sensitive
to its environment or configuration (e.g., executing a test at
a different time zone might cause a test to fail).

We created five worker threads in each of the six virtual
machine servers. Each worker has its own sets of commits
and projects to run to further parallelize the test execution
process. Despite that the execution of the test case requires
no re-compilation, Maven performs additional checks
before the test execution (e.g., predefined coding style
checks), which adds additional overheads to every test case
execution. The building and testing time of each commit
vary from 2 to 32 minutes, while the time of running a single
test case is usually less than a minute. In total, our data col-
lection and test execution took over 10 CPU years.

2.2 Code Coverage Analysis

We want to collect the detailed coverage of each test case in
a continuous fashion. Hence, we conduct code coverage
analysis on every commit.

Integrating Code Coverage Tool. We use JaCoCo [18] to
generate the code coverage report. JaCoCo is one of the
most popular code coverage tools that instruments bytecode
to trace the execution during the test run. We integrate
JaCoCo as a Maven plugin. While the integration is

straightforward for most Maven projects, for the multi-
module Maven projects, we need to manually modify the
Maven configuration to collect code coverage. More specifi-
cally, when integrating JaCoCo into a module, the collected
code coverage is limited to the classes of that module. How-
ever, in the case of a test case covering several different
modules in the system (e.g., integration tests), the out-of-
module class coverage will not be shown. Therefore, when
some test cases cover multiple modules, we add an extra
report-aggregate goal to the parent Maven build script (i.e.,
the pom file). Additionally, we add the JaCoCo plugin to
every module. Every time a test is run, JaCoCo updates the
covered classes in the coverage report of the module that
they belong to. A coverage collector, which we imple-
mented, will then parse and merge the coverage from every
module.

Analyzing Code Coverage Results. Once the test is executed,
we collect the code coverage of the individual test from the
JaCoCo report at three different levels of granularity: 1) cov-
ered classes, 2) covered methods, 3) covered line of state-
ments. In addition, we also collect the test status (i.e.,
passed or failed) and some general coverage metrics (i.e.,
branch coverage).

2.3 Flaky Tests Analysis

Prior studies [20], [22], [23] found that some test cases may
be flaky. Namely, the test result may sometimes pass and
sometimes fail, even if the code remains the same. To reduce
the noise caused by flaky tests when analyzing test results,
we remove flaky tests from our list of active test cases. We
use DEFLAKER [23] to compare the code change with the cov-
erage of the failing test cases to identify the flaky tests. A
failed test case is considered flaky if there is no overlap
between the failure introducing code changes (i.e., the test
case fails after the code changes) and the coverage of the
failed test case. Namely, the failed test cases do not have
overlap with the code changes. For every newly observed
test case failure, we analyze whether any of the changed
code is covered by test case, and if not, we mark the test fail-
ure as flaky.

2.4 Bug Reports Identification

To provide more information on the collected commits, we
also identify the corresponding bug reports through the
commit messages. The studied projects use the JIRA issue
tracking system, where each bug report receives a unique
bug report identifier (e.g., CLI-121). In addition, all 12 proj-
ects follow standards of including the bug report identifier
in commit messages. Therefore, we use the git command
“git show -s –format=%B” to mine the commit mes-
sages, and use regular expressions to capture bug report
identifiers. For instance, for the studied project commons-
cli, we use the regular expression “CLI-\cr d+”. Then, we
further leverage JIRA APIs [24] to verify that the detected
identifiers are of type Bug rather than other types (e.g., Fea-
ture request). In total, we collect 221 bug reports.

2.5 The Collected Data

Fig. 1 shows an overview of our data collection process and
the collected data. At the end of our test execution and data
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collection process, we built 8,093 commits across 12 studied
projects. The dataset includes: 1) all the build logs that were
generated when compiling every studied commit; 2) the test
status of every executed test case; 3) the code coverage of
every passed and failed test case and how the coverage
evolve overtime; 4) the code or configuration changes that
developers made over time and their effect on the test result
(e.g., a test case passes or fails after the change); 5) the stack
traces generated by failed tests; 6) the associated bug
reports. In total, the size of our collected data is 3.3 TB.
Future studies may use our collected data to understand
various testing practices in CI and help improve automated
testing techniques.

3 STUDYING THE CHARACTERISTICS OF TEST
FAILURES IN CI SETTINGS

As discussed in Section 2, we execute the test cases in over
8,093 commits to collect information such as code coverage
and test status. To the best of our knowledge, we are the
first to study and provide a dataset that contains commit-
by-commit code coverage and failure information through-
out the version control history. We believe that such dataset
has great potentials for future research. Therefore, we con-
duct an analysis to provide an initial overview. Specifically,
in this section, we provide an overview of the collected
dataset and study test failure introduction and resolution
across the studied time period. In particular, we answer the
two following research questions:

� RQ1: How often do test failure instances occur?
� RQ2: How long does it take for developers to fix a

test failure?

3.1 RQ1: How Often Do Test Failure
Instances Occur?

Continuous testing in CI helps expose software faults that
might negatively impact the functionality of the system
under test. A prior study [25] found that test failures consti-
tute the main reason why builds fail in CI. Labuschagne
et al. [26] showed in their study that 18% of test executions
in CI fail. However, previous studies only consider instan-
ces of test failure that last for exactly one commit, rather
than a prolonged period of time. In such cases, we cannot
have a complete picture on the prevalence of test failures
throughout the project evolution, since the same test can fail
repeatedly (e.g., spanning multiple consecutive commits).
Therefore, in this RQ, we study test failures both in their
prevalence of happening on the individual commit, and the
prevalence of the same test failure lasting through consecu-
tive commits.

To better understand the prevalence of test failures in the
studied projects, we identify and track each test failure. To
ease the explanation, we refer to a test failure that happens
across at least one consecutive commit (i.e., without being
resolved) as a test failure, and an instance of test failure that
occurred in a single commit as a test failure instance. We fur-
ther illustrate them using our example shown in Fig. 2.
Given that Test 1 fails at commits Ciþ1 and Ciþ2, a test failure
is the consecutive test failure happening across commits
Ciþ1 and Ciþ2 (illustrated as Test failure 1), and the test

failure instances are the individual failures happening on
Ciþ1 and Ciþ2 (which may be the same test failure). We pro-
vide quantitative details of the test failures at two different
levels of granularity: commits that contain failed test cases
and individual failed test cases (i.e., a test case may fail mul-
tiple times before it is resolved). We further analyze the test
failures to investigate how many are newly introduced and
how many are resolved during the continuous process. Our
findings provide a more comprehensive understanding of
the test failures and their distribution over commits in the
context of continuous integration, and provide insights for
future research. A considerable number (34%) of the analyzed
commits contain at least one test failure instance. Table 2
presents an overview of the prevalence of test failures for
each studied project. In total, we compile and execute the
test cases in 8,093 commits across the studied projects.
Among these 8,093 commits, we find that 2,724 (34%) of
them contain at least one test failure instance. The percent-
age of the commits that contain at least one test failure
instance ranges from 5% to 100%. Our finding shows that
although the studied projects, in general, contain a large
number of failed commits, the prevalence of test failures
varies noticeably among projects. Regression testing in CI
aims to guarantee the quality of software with each commit.
However, we observe different degrees of test failure preva-
lence across the studied projects. Future research may use
our dataset to investigate the reasons that may cause such
differences across projects.

We find that flaky test failure instances account for over 58%
of the test failure instances. For non-flaky test cases, the same test
failure might occur multiple times in the sequential commits. We
find that flaky test failure instances are common in the stud-
ied projects. Out of the 19,862 test failure instances found
across 8,093 commits, we observe 11,178 (56%) of them are
flaky (shown in the Test Failure Instances column in Table 2).
In contrast, 44% of the test failure instances are identified as
non-flaky. Our finding shows that failures caused by flaky
tests may be common. Note that a non-flaky test case may
remain unsolved and fail multiple times across the studied
commits. Therefore, we further study the number of new
and resolved test failures in each project from the non-flaky
test failure instances. The New failure column in Table 2
shows the number of newly introduced failures (i.e., a test
case fails after a commit). Similarly, the Resolved failure col-
umn shows the number of resolved failures (i.e., the test
case no longer fails after a commit). Overall, we find that
there were only 821 new failures and 783 resolved failures.

Fig. 2. Example of test failures and test failure instances.
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Given the small number of resolved test failures and the
large number of test failure instances, our finding shows the
same test failure might occur multiple times for the test fail-
ing repetitively in the sequential commits. Future studies
may be needed to study these repeatedly failed test cases,
whether flaky or not, and how they may affect software
quality in general.

Most failures are concentrated in a small set of test cases. To
study how the failures are distributed across the test cases,
we count the number of unique test cases that result in failure
across the studied commits. Note that we count a test case
as one unique failing test case even if the test case has failed
and been resolved more than once. We find that there are
only 332 unique failing test cases (i.e., out of 8,684 non-flaky
test failures) across all projects. This result implies that test
failures are concentrated in only a small number of test
cases, and most test cases never fail. After some manual
investigation, we find that these test cases are often related
to the main functionality or complex business logic of a proj-
ect. For example, jsoup is a HTML parser and one of its core
features is to parse HTML documents into Document Java
objects. The same set of test cases in the test suite Document-
Test (which tests object conversation and parsing) fail multi-
ple times during the studied period, although the fixes were
applied at different locations and for different reasons. One
possible reason may be that some parts of the code undergo
more changes, so the corresponding test cases are more
likely to fail.

Our dataset provides a complete picture of how often test
failures occur across commits in the CI context and the dis-
tribution of such test failures across commits and test cases.
Future research may use the dataset to study how code evo-
lution causes test failures and how to prioritize test execu-
tion. In addition, one interesting point as revealed by the
results is that test failures are concentrated in only a small
number of test cases, while most test cases never fail. Future
research may further study the quality and effectiveness of
the tests that never fail.

Test failure is prevalent in the evolution of the 34% of
commits that contain test failures. Among the test failure
instances, 44% are non-flaky test failure instances. We
also find that many test cases fail multiple times across
commits, and most failures are concentrated in a small
set of test cases.

3.2 RQ2: How Long Does It Take for Developers to
Fix a Test Failure?

In the CI context, the detection of test failures presents a
compensatory benefit of continuous testing, especially
when failures detect real faults. However, prior research
found that test failures, despite being detected, might not be
resolved for various reasons. Beller et al. [27] found that up
to 30% of the failing tests are not repaired immediately
although developers detect them directly in IDEs. Rogers
[28] found that sometimes, developers might allow known
test failures into CI, as long as those failures are resolved by
the end of the development iteration. However, it is
unknown how long test failures last in evolutionary set-
tings. Therefore, in this RQ, we study the resolution time it
takes for developers to fix a test failure, and how failures
are distributed at different resolution times.

To calculate how long it takes for developers to resolve a
test failure, we analyze every test failure in the version his-
tory and look for the failure-introducing commit (i.e., the first
commit in which the test failure occurs) and the failure-
resolving commit (i.e., the commit where the test failure is
resolved). Then, we compute the time difference between
the failure-introducing commit and the failure-resolving
commit. Note that if the same test case fails again after a res-
olution, we consider it as a different test failure as develop-
ers have already made changes to resolve the failure.

While most test failures are resolved within one day, some may
require more than a week to resolve. Table 3 shows the resolution

TABLE 2
The Total Studied Commits and the Commits That Contain Test Failure

Project Total commits Commits with failure Test passing Test failure instances Test failures

(failure ratio) instances Total Flaky Non-flaky New Resolved

(in millions) failure failure

commons-cli 558 121 (22%) 0.17 183 53 130 60 60
commons-codec 709 340 (48%) 0.44 4,351 1,105 3,246 58 47
commons-compress 337 182 (55%) 0.29 3,812 3,697 115 192 191
commons-csv 936 23 (2%) 0.23 80 28 52 32 32
commons-math 551 95 (17%) 3.33 221 188 33 2 2
gson 942 253 (27%) 0.84 6,129 4,949 1,180 53 43
jackson-core 453 344 (76%) 0.48 2,672 162 2,510 99 97
jackson-dataformat-xml 203 153 (76%) 0.04 156 4 152 10 10
jfreechart 439 342 (78%) 1.02 1,253 635 618 27 13
junit4 997 321 (54%) 0.91 386 347 39 35 35
jsoup 990 42 (5%) 0.49 66 0 66 23 23
fastjson 978 333 (35%) 3.99 553 10 543 230 230

Total 8,093 2,724 (34%) 12.23 19,862 11,178 8,684 821 783

Test passing instances show the number of times that a test executes without failure across all studied commits. Test failure instances show the number of fail-
ures that occur across all studied commits (a test failure may remain unresolved across multiple commits producing instances of test failure). Test failures show
the number of new/resolved test failures (if a test case fails multiple times consecutively, it is counted as one test failure).
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time of the test failures. The mean resolution time across all
the studied projects is 1 day, while the average of the median
resolution time is less than 1 day. In addition, 10 out of 12
studied projects have more than 75% of the test failures
resolved within a day. More than one third of the studied
projects do not have any test failure extending for more than
7 days. On average, across the projects, more than 75% of the
total test failures are resolved within a day, and only 5% of
the failures persist more than 7 days. While our findings
show that developers are actively trying to resolve the test
failure once they occur, there are still some exceptional cases.

As shown in Table 2, whilemost of the studied test failures
(783 out of 821) are resolved, there are still 38 test failures that
were introduced but never resolved. Thus, we further studied
those test failures, and calculated how long they are lasting.
We find that most of the failures happen near the end of the
studied periods of the projects. Around half of these 38 test
failures were introduced no more than three days before the
end of the studied periods. The maximum time difference
between their introducing time and the ending period of the
studied projects is nomore than 23 days. In short, it is possible
that the test failureswere not resolved due to the time periods
thatwe analyzed did not include their fixes.

By calculating the mean resolution time, we observe
that most test failures, if ever resolved, are resolved
within one day. Even when they are not resolved, they
are new failures that were introduced for no more than
21 days. However, some projects contain a maximum
test resolution time that is significantly longer than the
majority of the dataset (e.g., several weeks compared to
within one day). Our dataset identifies the test failures
that may have different characteristics, which causes the
fixing time to be much longer. Future testing research
may use our dataset to better understand the characteris-
tics of such long-lasting test failures, and further assist
developers with improving code quality.

While most of the test failures are resolved within one
day, we still find some failures that take more than a
week to resolve. Future research may use our dataset to
study the characteristics of the test failures and under-
stand the reasons for such differences.

4 STUDYING CODE CHANGES AND THEIR
RELATIONSHIP WITH TEST FAILURES

Our collected dataset includes the complete code coverage
evolution at the statement level and the code changes that
developers made throughout the version control history. In
this section, we study the changes that developers made
when introducing/resolving test failures, and how code
coverage change before and after fixing the failure. Our
findings provide an understanding on the relationship
between code coverage and test failure, and provide
insights and a new dataset for future automated testing
research such as bug localization. In particular, we answer
the two following research questions:

� RQ3: How does the code change when the test fail-
ure first happens?

� RQ4: How does the code change when the test fail-
ure is resolved?

4.1 RQ3: How Does the Code Change When the Test
Failure First Happens?

Prior research studied the characteristics of test failures in
relation to the source code. Pinto et al. [16] showed that test
execution might fail for three major reasons including
removal of the required source class or method, catching
runtime exceptions, and assertion violation. Marsavina
et al. [29] further examined, in the case of introduction of
test failure, how production and test code were changed.
They found that many failed test cases may be added by
developers while working on production code. In this RQ,
we study the changes that developers made when introduc-
ing test failures, and how code coverage changes (which
shows the dynamic execution information) before and after
introducing the failure. Studying the change in code cover-
age may give insights on why test failure happens and pro-
vides an understanding of the relationship between code
coverage and test failure.

To better understand the evolution of code coverage
when the test failure first happens, we record the code cov-
erage of each test failure. We provide quantitative analyses
to study the test failure in CI settings where code coverage
is one of the few pieces of information available to

TABLE 3
The Resolution Time of Test Failures

Project Resolution time

Min Max Mean Median < 1 day > 7 days

commons-cli < 1 day 63 days 4 days < 1 day 77% 12%
commons-codec < 1 day 102 days 2 days < 1 day 87% 2%
commons-compress < 1 day 3 days < 1 day < 1 day 83% 0%
commons-csv < 1 day 2 days < 1 day < 1 day 97% 0%
commons-math < 1 day < 1 day < 1 day < 1 day 100% 0%
gson < 1 day 15 days 4 days 1 day 49% 23%
jackson-core < 1 day 53 days 2 days < 1 day 60% 4%
jackson-dataformat-xml < 1 day < 1 day < 1 day < 1 day 100% 0%
jfreechart < 1 day < 1 day < 1 day < 1 day 100% 0%
junit4 < 1 day 22 days 4 days 1 day 43% 26%
jsoup < 1 day 17 days < 1 day < 1 day 96% 4%
fastjson < 1 day 16 days < 1 day < 1 day 88% 1%

Average < 1 day 21 day 1 day < 1 day 75% 5%

2358 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023



developers. First, we investigate how developers introduce
test failures. In particular, we derive categories of code
changes based on the types of files changed, and present the
number of test failures belonging to each category. By
studying what type of code changes might introduce the
test failures, future research might inspire from our findings
to better help developers with test failures. Then, we evalu-
ate the impacts of test failures on code coverage. In other
words, when test failures occur what can we observe from
the code coverage? We present the coverage change based
on the total line coverage increased and decreased.

To investigate which files were modified, for each test
failure, we conduct quantitative analyses on the failure-
introducing commits. We categorize the files with . java
extension as either source code or test files, and otherwise
as non-code files (e.g., data and configuration files). We use
the list of active tests identified in Section 2.1 to further dis-
tinguish between source code and test files.

To investigate how the code coverage changes after
failure introduction, we first compute the per-method line
increased and decreased from the failure-introducing
commit and the commit before it. Rather than checking
whether the overall coverage increases or decreases, we
calculate the individual line increased and decreased in
each covered method. In this way, we can obtain finer-
grained results and identify the case where the line cover-
age has changed but the overall coverage remains the
same. Then, we sum up the per-method line increased
and decreased from all the covered methods to get the
total lines increased and decreased. We quantify the cov-
erage change based on the total line increased and
decreased. As the line coverage counts the lines of code
without including the conditional statements (e.g., if

and while), we further compute the branch coverage in
the case where we observe no difference in line coverage.
Similar to the line coverage calculation, we calculate the
individual branch increased and decreased from each
covered method.

We find that many failed test cases may be added by developers
while trying to resolve an issue. Fig. 3 shows the types of files
that were modified in failure-introducing commits. Overall,
we find that many failure-introducing changes modify both
source code and test files (52% on average), while just 35%

modify only source code files. We also find that many of the
commits that modify both source code and test files may be
adding new test cases to address newly reported bugs. For
instance, in fastjson, which is a JSON processor for data
streaming, 63% of its failure-introducing commits (i.e., 147/
233) modify both test and source code files. We find that
nearly 99% (146/147) of those modifications added new test
files to the project. Those new test files either contain or are
named after some bug ID (e.g., Issue2133), which may indi-
cate that the test files were added when developers were
trying to resolve the bugs. Overall, we find that 18% (150/
821) of the test failures in the studied projects either modi-
fied or added test files that contain the failed test cases.
Moreover, 13% of the failure-introducing commits modify
only test files. In other words, developers may be fixing a
bug while modifying or adding test files.

Automated testing techniques (e.g., bug localization)
use the information of running test cases to assist devel-
opers in identifying bugs. Our finding shows that, if a
dataset is collected without considering such newly
added test cases that are used to resolve the bugs, there
may be potential biases in the result. Namely, developers
were already trying to address the bug by adding new
test cases based on their knowledge. For instance, if such
newly added (and failing) test cases were used for evalu-
ating techniques such as bug localization, one may be
implicitly using developers’ knowledge of the buggy loca-
tion to assist the automated techniques. In contrast, our
dataset specifically shows whether a failure-introducing
commit modifies either source code, test file, or both.
Future studies may use our dataset to filter out those
newly added or modified test cases (e.g., the test is being
modified by developers to capture the bug, so it is failing)
to better evaluate automated testing techniques such as
bug localization.

Test execution may stop prematurely when it encounters a failure
in test files (e.g., assertion statement is invalid), which results in a
decrease in code coverage. Table 4 shows the changes in the aver-
age code coverage (i.e., averaged across all failure-introducing
commits in a project) before and after the failure-introducing
commit. We report the changes in both method-level and line-
level coverage. To note that we perform our coverage analysis
on 468 (57%) new failures instead of all the new failures (821),

Fig. 3. The categories of the files that were modified in failure-introducing
commits.

TABLE 4
Average Code Coverage Before and After the Failure-Introduc-

ing Commit

Project Method level Line level

Increased Decreased Increased Decreased

commons-cli 10 12 36 68
commons-codec 4 8 18 56
commons-
compress

5 16 16 82

commons-csv 2 26 7 136
fastjson 15 27 329 511
gson 0 28 1 511
jackson-core 15 17 89 101
jfreechart 7 18 49 119
junit4 13 29 54 124

Average 8 20 67 190
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as not all failures have code coverage change between the fail-
ure-introducing commit and the prior commit. In addition,
there were some test cases that did not exist before the failure-
introducing commit (i.e., new test cases).

Overall, we find that the failure-introducing commits
decreasedmore coverage than increased. For example, the aver-
age decreased covered lines are 190, while the increased covered
lineswere only 67.Wenotice that sincewegenerate the coverage
based on the executed test code,when a test case fails, the part of
the test code that is beyond the failing location will not be exe-
cuted andwill not be included in the coverage data. If a test case
fails at the beginning of the execution, the code coveragemay be
empty in some cases (e.g., the pre-test check fails). For example,
we observe a serialization test (i.e., Issue3436#test_for_issue) from
fastjson, which fails with a JSONException. The failure happens
at the beginning of the test case, so the remaining test code is not
executed andno code coverage report is generated.

Our dataset provides both the code coverage before the fail-
ure-introducing commits and the code coverage of the failed
commit. Future studies may use our dataset to study how the
coverage evolution data may help locate where a bug is intro-
ducedwhen the coverage of the failed test cases is incomplete.

Around 6% of the failure-introducing changes do not change the
line coverage, nor the branch coverage. When analyzing the cover-
age change with different categories of failure-introducing
changes, we find that around 44% (200/468) of the failure-intro-
ducing changes do not change line coverage, even though the
changesmodify source code or test files, as described in Table 5.
While those failures do not have changes on the line coverage,
87% (174/200) of themdo have a different branch coverage. The
remaining 13% (26/200) of the test failures do not involve cover-
age change at all (e.g., the failed assertion statement is the last
line in the test case and the test failure is due to incorrect test
setup or variable value). As we found, the coverage (i.e., line or
method coverage) might not always change when the test fail-
ures are first introduced. Our dataset and findings may inspire
researchers and practitioners to further investigate the preva-
lence of software regression and refactoring that caused test
failures.

Many failed test casesmay be addedwhen developers are
trying to resolve an issue, and 13% of the failure-introduc-
ing commits onlymodify test files.We also find that, com-
pared to the prior passing commit, the code coverage
generally decreases in failure-introducing commits.

4.2 RQ4: How Does the Code Change When the Test
Failure is Resolved?

Understanding the changes that developers apply when
resolving a test failure may help improve future automated

testing techniques. In this RQ, we study the types of files
that are modified in failure-resolving commits, and how do
code coverage changes when the failure is resolved. Specifi-
cally, we answer the RQ by answering two sub-RQs: What
types of changes do developers apply when fixing a test failure?
and Are there overlaps between the code coverage of the failed test
cases and the failure-resolving location?

RQ4.1: What types of changes do developers apply when fixing
a test failure?

We study the test failure resolution in two steps: 1) we
investigate which files were modified during the resolution,
and then 2) we study how the coverage changes after failure
resolution. To investigate which files were modified, for
each test failure, we examined the changed files in failure-
resolving commits. Same as RQ3, we categorize the files
with . java extension as either source code or test files, and
otherwise as non-code files (e.g., data and configuration
files). To investigate how the code coverage changes after
failure resolution, similar to RQ3, we quantify the coverage
change based on the total line increased and decreased. In
other words, we sum up the per-method line added and
deleted from all the covered methods to get the total
increased and decreased lines. Knowing which files were
modified during the resolution and how the coverage
changes may help better understand how do developers fix
a test failure and improve automated testing techniques.

Developers often resolve test failures by modifying non-code
files (21%) or only test files (14%). Fig. 4 shows the distribu-
tion of the files that were modified in failure-resolving com-
mits. Overall, we find that 34% of the failure-resolving
commits modify both test and source code files, and 31% of
the commits modify only the source code files. We also find
that developers commonly modify non-code files (21%), or
only the test files (14%) in failure-resolving commits. The
types of modified files vary across the studied projects. For
instance, in fastjson, we observe 91% of the failure-resolving
commits modify either only source code files, or both test
and source code files. Only 6% of failure-resolving commits
modify test files. However, in another project (i.e., com-
mons-codec), we observe that more than 36% of the test fail-
ures are resolved by modifying only test files. In other
projects, such as gson and jackson-core, developers might
also only modify the non-code files, such as data or configu-
ration files, to fix the test failures. We observe more than

TABLE 5
Test Failures With and Without Coverage Change for Different

Introduction Categories

Test Only Source Only Both

Changed Unchanged Changed Unchanged Changed Unchanged

26 38 140 74 159 31

Fig. 4. The types of files that were modified in failure-resolving commits.
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49% and 76% of the failures are fixed through non-code
changes in gson and jackson-core, respectively. Our find-
ings show that the resolution of the test failure does not
only limit to source code files, but also the test and non-
code files. When studying test failures, future research
might consider non-code files as a potential fix for failures,
as well as the test files that might already contain some
issues related to the failures.

Around 19% of the failure-resolving changes do not alter code
coverage, even though the changes modify source code or test files.
In Table 6, we show the number of resolved test failures
with and without coverage change. We find that there is a
non-negligible number of failure-resolving changes that did
not change code coverage. 23.7% (22/93), 20.1% (46/229),
and 14.0% (21/151) of the test-resolving commits did not
change code coverage in each resolution category (i.e., mod-
ify only test files, only source code files, or both), respec-
tively. To note that we perform our coverage analysis on
473 (60%, out of 783) among all the resolved failures because
the code coverage information may not be available for the
failure-resolving commit or the commit before (i.e., the fail-
ing commit). Some test cases may be removed in the failure-
resolving commit (as found by previous research [30], [31]),
and there may be no coverage for some failing test cases
(e.g., a test case fails early when no coverage is available
yet). In addition, as discussed above, developers may mod-
ify non-code files (e.g., test configuration or data files) that
are not visible through code coverage. The data files may be
used in test cases to verify the expected test output, and
some configuration issues may cause test cases to fail.

To better understand in what situation do failure-resolv-
ing commits have no code coverage change, we manually
studied the test failures. We performed our manual study
on all 310 resolved test failures in which the failure-resolv-
ing commits did not introduce any code coverage change.
The first author manually examined the code changes
applied to the failure-resolving commit, and the code cover-
age. This information provides hints on the relationship
between the changed code and test execution. By leveraging
this information, the first author uncovered a list of catego-
ries of code changes that may result in no code coverage
change. Then, the second author systematically verified the
assigned categories. In case of any discrepancy, the two
authors further carried on discussions to reach a consensus.
We observed four main types of changes: 1) test assertion
changes, 2) method parameter changes, 3) invisible dynamic
changes, 4) conditional statement changes. Each of these four
types of changes can result in resolved test failures without
coverage change. We briefly present the four types of
changes as follows:

Test Assertion Changes: changes performed on assertion
statements in the test cases. As only the assertion statement

is modified, the dynamic execution is unchanged. For
instance, one test failure captured in fastjson modified the
expected string value in the assertion statement assertEq-
uals(expected_str, actual_str) to adapt to recent
changes in the source code that necessitate a new expected
string value in the test. Method parameter changes: changes
that modified the parameter value inside method invoca-
tions. An example of such is correcting a wrong parameter
to fix the test failure.

Invisible Dynamic Changes: changes that modified the flow
of the third-party code which is not reported in the coverage
report. For example, modifying the string format of a date-
time object before passing it to a special third-party json
datetime formatter (where the software will use the output).

Conditional statement changes: changes that modified the
conditional statements (e.g., if-else or while) to fix logi-
cal errors. For example, developersmay add a new condition
(e.g., from while(condition1) to while(condition1

&& condition2)) to fix a logical error. However, since the
change does not add new code and the test may not be
updated, there is no coverage change. Our findings show
that the resolution of test failure is not always visible through
code coverage change. Moreover, the system dynamic
behavior may change, even if developers fix the test failure
and the code coverage remains the same. Future research
may use our dataset to further evaluate whether existing
automated testing techniques (e.g., bug localization or auto-
mated program repair) need to be tailored to work on this
type of issues.

RQ4.2: Are there overlaps between the coverage of the failed
test cases and the failure-resolving location? Many automated
testing techniques (e.g., fault localization) leverage code
coverage to help developers identify buggy code [1], [2], [3],
[4], [5]. The general assumption of such techniques is that
the buggy code is on the execution path of a failed test. In
this RQ, we wish to investigate whether the coverage of the
failed test can provide useful insights on the failure-resolv-
ing location. By understanding this, we may provide
insights for future research.

Here, we analyze the results of 473 test failures that have
the code coverage information. We first extract a list of cov-
ered files (fcovered) from the coverage information of the com-
mits that have failing test cases. Then, we compare fcovered
with the changed files in failure-resolving commits (fchanged)
and compute an overlap between them. We calculate the
percentage of the overlap based on the total number of

changed files as
#fcovered\#fchanged

#fchanged
.

In all the studied projects except one, many modified files in the
failure-resolving commits do not have overlap with the executed
files in the failing commit. Table 7 shows the overlaps between
fcovered and fchanged. We find that a notable number of the
changed files are not on the execution path covered by the
test cases in the failure-resolving commit. The average per-
centage overlap across the studied projects is 66% (except
for jfreechart, where the overlap is 100%). We observe that
the reason for a relatively low overlap may be that the cov-
erage of failed test cases may be incomplete if the test case
fails during the early execution stage. Such incomplete code
coverage might present a limitation to existing automated
testing techniques that analyzes code coverage (e.g., fault

TABLE 6
Test Failures With and Without Coverage Change Count for

Different Resolution Categories

Test Only Source Only Both

Changed Unchanged Changed Unchanged Changed Unchanged

71 22 183 46 130 21
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localization). We also find a non-trivial number of instances
(i.e., 10% of the overlaps) where the failure-resolving com-
mits only modify the failed test case and the coverage did
not change. By examining these instances, we observe that
some of the test failures were resolved in unconventional
ways. For instance, as also reported in a prior study [17],
developers may disable the assertion statements in the test
code (e.g., the code is commented out), but the issue
remains unsolved.

Developers often resolve test failures by modifying
non-code files (21%) or only test files (14%). Even
when modifying source code or test files, around 19%
of the failure-resolving changes do not alter code cov-
erage. In addition, in all studied projects except one,
we observe that a notable number of the changed files
are not on the execution path covered by the test
cases in the failure-resolving commit.

5 FUTURE RESEARCH DIRECTIONS

As described in Section 2, we executed the test cases on con-
secutive sequences of commits in 12 studied projects.We col-
lected the data and made it publicly available [32]. Our data
is 3.3 TB andmay be used in future testing research or bench-
marking different techniques. Below, we discuss some possi-
ble research directions using our data.

Studying and Understanding Quality Issues in Test Code. In
RQ4, we found that developers may only modify test files to
resolve test failures. We also found that some test cases may
be failing already when they were first added. Our findings
indicate that there may be pre-existing issues causing test
cases to fail. Future studies may use our dataset to study the
quality of test code throughout software evolution.

Studying Code Coverage Evolution. We observed that some
test failures do not involve any coverage change either in
the failure introduction or the failure resolution in all stud-
ied projects in RQ3 and RQ4. Future studies may use our
dataset to study the evolution of such test failures and their
coverage throughout their entire lifetime. We observe that
the time of resolving test failures and how the failures are
resolved is project-specific and our study provides the first-
step insights towards studying the relationship between
test failure and code coverage. Future studies may investi-
gate whether there exists any correlation between the
increased coverage and faster failure resolution time. It is
also interesting to investigate whether better coverage helps
to detect and resolve the failures.

Studying the Roles of Test Cases That Failed Repetitively. In
RQ1, our results show that most test failures are concen-
trated in a small number of test cases. Namely, the test fail-
ure may be resolved but the same test case may fail again
multiple times during the evolution due to other reasons.

Our dataset may be used to study the characteristics of such
test cases, and whether it is possible to help developers
enhance the quality of both the test code and the tested
source code to prevent future bugs.

Studying how code change history may assist fault localization
and program repair techniques: In RQ3, our findings show that
test execution may stop prematurely when it encounters a
test failure, which might result in a decrease in code cover-
age. As there exist many automated testing techniques that
leverage code coverage (i.e., fault localization and program
repair techniques), future studies may use our dataset to
propose new or enhance current techniques. Future studies
may mine the past code coverage data to complement the
decrease in coverage. In addition, future studies may ana-
lyze the code changes that we collected in the dataset and
examine how recent code changes contribute to test failures.
Future studies might even use our dataset for benchmark-
ing automated testing techniques.

Studying How Build Configurations May Affect Test Result.
Our dataset contains all the build logs that we collected
when compiling and executing the test cases in the studied
commits. As we found in RQ4, some failure-resolving com-
mits only modify non-code files such as configuration files.
Future studies may analyze the build logs to study how the
quality of the build scripts contributes to test failures.

6 THREATS TO VALIDITY

External Validity. Our studied projects are all open source
and implemented in Java, so our findings may not be gener-
alizable to other projects. To minimize the threat, we try to
choose the projects that are well studied in the research
community or are commonly used by many systems around
the world (e.g., junit4). Future research may consider collect
similar datasets for projects that are implemented in other
programming languages and verify with our findings. We
base our findings on the data in the studied time range from
each project. In some cases, studying a different time range
may lead to slightly different results. To generalize our
results as much as possible, we select a large range of com-
mits (1,000 commits per studied project). This time range of
commits was chosen because it is a relatively large number
but still feasible to manually resolve compilation issues.
Note that for some projects (e.g., commons-cli), the total
number of commits is less than 1,000 commits as of Septem-
ber 2020. In total, we compile and execute the test cases in
8,093 commits across the studied projects.

Construct Validity. In our study, the starting date varies
from 2002 to 2018, which implies that the studied projects
may be at different stages of development. While this can
increase the diversity of the studied systems, it can also be a
threat to the construct validity of our results. Nevertheless,
our findings are consistent in general. We encourage future
research to leverage our dataset and further explore the dif-
ferences among the projects and their relationship between

TABLE 7
Overlaps Between the Coverage of the Failed Test Case and the Failure-Resolving Location

Project commons-cli commons-codec commons-compress commons-csv fastjson gson jackson-core jfreechart junit

Overlaps(%) 64 76 65 90 71 14 58 100 58
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different time ranges. When analyzing code coverage, we
notice that some test cases may have empty coverage. To
ensure the validity of our results, we re-run all the failing
tests in a new environment. Then, if there is still any test fail-
ure without coverage, we randomly select some tests to run
manually. Based on our manual study, we observe that the
code coveragemight not be generatedwhen the test case fails
in the early stage of the executionwhere no source code is yet
covered. Future studies should consider this situation when
applying automated testing techniques that leverage cover-
age information. Even though we tried our best to compile
and run the test cases in the studied projects, some of the
excluded commits (e.g., we cannot compile) may still be
compilable. Nevertheless, our dataset still includes over
8,000 compiled commits and test execution results, which
we share with the research community. There are uncompil-
able commits between sequences of compilable commits,
whichmight affect the continuation of our dataset. In Appen-
dix A.1, which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TSE.2022.3218264, we conducted analyses and showed that,
despite the presence of uncompilable commits in some proj-
ects, in general, our dataset contains long and consecutive
sequences of compilable commits. We encourage future
studies to further investigate those compilation issues.

There are many factors that can influence the compilation
of the commits (e.g., availability of past dependencies, inap-
propriate Java Development Kit version). For instance, most
of the studied projects use a handful of third-party libraries,
so there may be other dependency issues that require man-
ual fixes (e.g., some libraries are no longer available in the
central Maven repository and need to be manually down-
loaded). We manually resolve the issues and update our
automation scripts accordingly. We spent our best effort to
manually resolve the compilation issues. To provide better
confidence on the accuracy of our results and allow continu-
ous improvement on our dataset, we made all the data that
we collected publicly available [32], as transparent as possi-
ble with this paper. Due to the size of the code coverage
data, we published it separately in a Zenodo repository [33].

7 RELATED WORK

Testing in Continuous Integration. Some prior research [25],
[26], [28] have aimed to study CI testing practices. Rogers
[28] found that developers might allow known test failures
into CI, as long as those failures are resolved by the end of
the development iteration. Our study also found that,
despite the presence of CI environment, there are a non-neg-
ligible number of test failures that persist over multiple
days. Beller et al. [25] observed that testing constitutes the
main reason why builds fail in CI, with test failures respon-
sible for 59% of broken builds. Labuschagne et al. [26]
showed that 18% of test executions in CI fail and that 13% of
these test failures are flaky. In their study, they categorized
the resolution of failed tests into three categories: code fixes,
test fixes, and combination of code and test fixes. In our
study, we find that non-code changes (e.g., data files) might
also constitute the resolution of test failure. Previous stud-
ies [29], [30] also discussed some characteristics of test fail-
ure by exploring how the test code evolved over time.

Marsavina et al. [29] discussed co-evolution patterns of
production and test code. Our study further examines how
code coverage, production and test code change upon
the introduction of a test failure. We find that, compared to
the prior passing commit, the code coverage generally
decreases. They also found that, in some studied projects,
up to 47% of all code changes are performed on test files. In
our manual study, our goal is to study how the code
changes when developers resolve the test failures. We find
that 48% of the code changes modified test files when
resolving test failures (i.e., 34% modifying both test and
source code files, 14% on only the test files). Pinto et al. [30]
studied the effect of newly added tests on code coverage,
and found that, on average, 56% of the newly added tests
do not change the previous code coverage (i.e., branch cov-
erage). In this paper, we observe that test failures might
impact code coverage, since the test execution may stop pre-
maturely which results in a decrease in code coverage.

Testing Practices. Prior studies conducted empirical stud-
ies on test code, and proposed suggestions to help improve
testing practices [31], [34], [35], [36]. Just et al. [34] evaluated
the developer-provided tests (from version history) and the
user-provided tests (from bug reports) on fault localization
and automated program repair techniques. They found that
developer-provided tests contain more information to detect
bugs, as the tests are specifically tailored to cover the buggy
code. Kim et al. [31] conducted an empirical study on the
evolution and maintenance of test annotations. They found
that developers may use test annotations to remove or dis-
able failed tests. Liu et al. [35] discussed the potential bias of
over-fitting issue in automated program repair, where test
failure may be resolved without actually fixing the bug. Our
results confirm this finding as we found that developers may
disable the assertion statements to make failed tests pass
again. Hilton et al. [36] evaluated the coverage change
between project revisions and assessed the impact of code
changes on test quality. Zaidman et al. [37] studied the co-
evolution of source and test code. They investigated the test
coverage evolution based on its relation with test-writing
activity. Beller et al. [27] suggested in their study that the
production and test code have some tendency to change
together, but the production code change does not always
involve test change and vice versa. Catolino et al. [38] sur-
veyed developers to understand how assertion density
relates to the quality of test code. In this study, we present
the test result and test coverage in the context of CI where
the code changes are integrated and tested continuously.

Bug and Test Datasets. Many studies [9], [11], [12], [13],
[39] have proposed benchmark or dataset on failed (and
passed) tests to facilitate research on automated testing
techniques. Just et al. [9] proposed Defects4J which records
the information on the failed tests before and after the fail-
ure resolution. Le Goues et al. [11] proposed ManyBugs and
IntroClass for C projects that have the test failure, the ver-
sion in which it occurs, and the repairs to the failure that
describes expected behavior. Elbaum et al. [12] collected a
dataset at Google that includes over 3.5 M records of test
suite executions. Madeiral et al. [13] shared BEARS-
BENCHMARK that contains the test failures before and
after the resolution. Saha et al. [39] presented Bugs.jar that
contains test failures for existing bugs. We present T-Evos
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as a dataset that contains the evolution of test execution. As
the code changes are integrated and tested continuously,
the evolution data provide additional values in CI settings.
Our dataset may also complement existing datasets and
benchmarks.

8 CONCLUSION

In this paper, we present a dataset, T-Evos, which contains
fine-grained test execution information collected on a com-
mit-by-commit basis. We compile and execute the test cases
in 8,093 commits across 12 projects, and collected the build
logs, test status, code coverage, code changes, and stack
traces. The data collection process took several hundred
hours and over 10 year CPU time, resulting in over 3 TB in
data size. We also conduct an empirical study on the col-
lected test execution data. Our results also show that 1) 42%
of commits contain test failures, and most of the test failures
are resolved within one day; 2) many of the test failures hap-
pen in newly added or recentlymodified test files (e.g., test is
modified to address an issue); 3) when resolving the test fail-
ures, developer may modify non-code files or only test files;
4) there is only an average of 66% overlap between the files
modified in failure-resolving commits and files executed in
the failing commit, as the coverage of failed test cases may be
incomplete if the test case fails during the early execution
stag. Finally, we provide some possible research directions
that may be done using T-Evos. In summary, our paper
presents a new dataset on the evolution of test failures and
code coverage. We highlight the characteristics of test failure
and its relationship with code changes. In addition, our data-
set may be used in future testing research or benchmarking
different automated testing techniques.
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