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Abstract—To assist developers with debugging and analyzing bug reports, researchers have proposed information retrieval-based
bug localization (IRBL) approaches. IRBL approaches leverage the textual information in bug reports as queries to generate a ranked
list of potential buggy files that may need further investigation. Although IRBL approaches have shown promising results, most prior
research only leverages the textual information that is “visible” in bug reports, such as bug description or title. However, in addition to
the textual description of the bug, developers also often attach logs in bug reports. Logs provide important information that can be used
to re-construct the system execution paths when an issue happens and assist developers with debugging. In this paper, we propose an
IRBL approach, Pathidea, which leverages logs in bug reports to re-construct execution paths and helps improve the results of bug
localization. Pathidea uses static analysis to create a file-level call graph, and re-constructs the call paths from the reported logs. We
evaluate Pathidea on eight open source systems, with a total of 1,273 bug reports that contain logs. We find that Pathidea achieves a
high recall (up to 51.9 percent for Top@5). On average, Pathidea achieves an improvement that varies from 8 to 21 and 5 to 21 percent
over BRTracer in terms of Mean Average Precision (MAP) and Mean Reciprocal Rank (MRR) across studied systems, respectively.
Moreover, we find that the re-constructed execution paths can also complement other IRBL approaches by providing a 10 and 8 percent
improvement in terms of MAP and MRR, respectively. Finally, we conduct a parameter sensitivity analysis and provide
recommendations on setting the parameter values when applying Pathidea.

Index Terms—Bug localization, log, bug report, information retrieval

1 INTRODUCTION

OFTWARE debugging is one of the most time-consuming

tasks in software maintenance. On average, developers
spend 33 percent of their time on debugging and bug fixing,
rather than on implementing new features [1]. When an
issue occurs, developers would create a bug report that
documents the necessary information for others to repro-
duce, diagnose, and fix the bug. However, due to limited
time and resources, many bugs remain unfixed for a long
period of time. A prior study [2] finds that it often takes sev-
eral months for developers to address a bug report, which
further hinders the user-perceived quality of the system.

To help developers speed up the debugging process,
researchers have proposed various information retrieval-
based bug localization (IRBL) approaches [3], [4], [5], [6],
[7], [8], [9], [10], [11]. IRBL approaches leverage information
retrieval to help developers locate potentially buggy files.
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Given a bug report, IRBL approaches use its textual infor-
mation as queries to generate a ranked list of source code
files, based on their textual similarity, that are potentially
buggy. To improve the performance of IRBL, researchers
have proposed approaches that utilize various information
in software repositories, such as similar bug reports from
the past [3], software development history [11], [12], and
structured information in bug reports [6].

In addition to the textual description of a bug, developers
often provide the system execution information when a bug
happens. Developers may attach log snippets (e.g., 2015-
07-01 19:24:12,806 INFO org.apache.ZooKeeper.
ClientCnxn: Client session timed out) or stack
traces (e.g., java.lang.NullPointerException) that
show a snapshot of the system execution. Prior studies [13],
[14], [15] show that logs (i.e., log snippets or stack traces)
can be mapped to source code to re-construct execution
paths and assist developers with debugging. Even though a
number of IRBL approaches [3], [16] try to leverage stack
traces in bug reports, they only analyze the file names that
appear directly in stack traces to boost the bug localization
performance. Yet, the embedded system execution informa-
tion, which can be re-constructed by linking the logs to their
corresponding location in the source code, may further help
improve the performance of IRBL approaches.

In this paper, we propose Pathidea, an IRBL approach
that leverages the execution paths which are re-constructed
from logs in bug reports. Pathidea uses static analysis to
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create a file-level call graph, and uncover the path in the call
graphs that may be related to the bugs. Different from prior
studies which only utilize stack traces from bug reports,
Pathidea analyzes both log snippets and stack traces. Similar
to stack traces, log snippets also contain important informa-
tion that can be used to re-construct the execution paths
when an issue happens, and thus, help with bug localization.

We evaluate Pathidea on eight open source Java systems,
with a total of 1,273 bug reports that contain logs (i.e., log
snippets, stack traces, or both). We first compare Pathidea
with two baseline IRBL approaches (i.e., VSM and BRTracer
[16]) using five commonly used metrics (i.e., precision,
recall, and Fl-measure for Top@N, MAP, and MRR). Our
results show that, while both Pathidea and BRTracer out-
perform the vanilla VSM in identifying buggy files, Pathi-
dea achieves an average improvement that varies from 8 to
21 and 5 to 21 percent over BRTracer in terms of MAP and
MRR, respectively. Then, we study if the re-constructed exe-
cution paths can provide additional improvement to exist-
ing IRBL approaches (i.e., BRTracer). Our results show that
when integrating the path analysis (i.e., linking the logs to
their corresponding location in the source code and re-con-
structing the execution paths accordingly) with BRTracer,
the execution paths information can provide a 10 and 8 per-
cent improvement in terms of MAP and MRR, respectively.
To the best of our knowledge, Pathidea is the first IRBL
approach to utilize the re-constructed execution paths based
on logs provided in bug reports. Our case study shows that
Pathidea can identify buggy files with high recall values
(i.e., up to 51.9 and 57.7 percent for Top@5 and Top@10,
respectively), and the path analysis may also complement
other IRBL approaches. In summary, the contributions of
this paper are as follows:

e We proposed Pathidea, a new IRBL approach that
uses static analysis to re-construct execution paths
from logs in bug reports to help locate the potential
buggy files. To the best of our knowledge, Pathidea
is the first approach that incorporates the re-con-
structed execution paths into the IRBL approach.

e We conducted a case study to evaluate Pathidea on
eight open source systems. The results demonstrate
that Pathidea can identify buggy files with high pre-
cision and recall values, and outperforms existing
state-of-the-art IRBL approaches.

e Our results show that the re-constructed execution
paths can complement existing IRBL approaches by
improving bug localization performance.

e We conducted a parameter sensitivity analysis and
provide recommendations on setting the parameter
values when applying Pathidea.

In summary, our approach sheds light on further
improving IRBL approaches by combining information in
bug reports with the source code. Future studies may con-
sider leveraging such execution paths information when
designing IRBL approaches. The data of our experiment is
publicly available online."

Paper Organization. In Section 2, we present some back-
ground information on bug reports and information

1. https:/ / github.com/SPEAR-SE/Pathidea_Data
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retrieval, motivating examples, and related work. In Sec-
tion 3, we describe our approach in detail. In Section 4, we
explain our data collection process and the evaluation met-
rics. In Section 5, we present our results and the findings for
each research question. In Section 6, we further elaborate on
the results. In Section 7, we discuss the threats to validity.
Finally, Section 8 concludes the paper.

2 BACKGROUND AND RELATED WORK

Bug reports contain various fields that help reporters better
describe the bug. There are three main fields that provide
important information for developers to debug the problem:
summary, detailed description, and comments. The sum-
mary field provides a short description of the bug, while the
detailed description expands on the encountered problem.
The reporters typically provide the steps to reproduce the
bug, observed behaviors, stack traces, or log snippets in the
detailed description to help reproduce and fix the bug.
When further clarifications are needed, developers may ask
the reporters to provide additional information in the com-
ments field [17].

The textual information in bug reports often provide hints
on where the bugs may be located. To help developers reduce
the needed time for locating the bugs, researchers have pro-
posed a series of information-retrieval based bug localization
(IRBL) approaches [3], [4], [5], [6], [7], [8], [9], [10], [11]. IRBL
approaches compute the textual similarity between the bug
report and source code files using approaches from informa-
tion retrieval, such as vector space model (VSM). VSM is an
algebraic model that represents documents (i.e., bug reports
and source code files) as vectors of index terms. Each docu-
ment is represented as a term-frequency vector in an n-dimen-
sional space, where n denotes the number of unique terms in
the corpus (i.e., collection of documents). When applying
VSM in IRBL, a bug report represents the search query, while
the entire source code files are used as the corpus, with the
goal of finding the document (i.e., source code file) that has
the highest textual similarity (e.g., largest cosine similarity)
with the given bug report.

Although IRBL approaches have shown promising results,
most of the prior studies only treat the information in bug
reports as pure text. However, in addition to the textual
description in bug reports, developers also heavily rely on the
logs that the reporters provide to understand and debug
issues [18]. Logs, either log snippets or stack traces, show the
partial system execution when a problem occurs. Prior stud-
ies [13], [14] show that logs can be mapped to source code and
assist developers with understanding the system execution
during debugging and maintenance. Such valuable informa-
tion may further help improve the performance of IRBL
approaches. Fig. 1 depicts the stack trace extracted from the
Description section of a bug report from YARN. Based on the
textual information in the stack trace, IRBL approaches may
identify files such as DockerClient, DockerCommandExecutor,
LinuxContainerExecutor, and DockerContainerDeletionTask
(i.e., the name of the files shown in the stack trace) as poten-
tially buggy files. However, the information is limited as
we may overlook what happens between each stack frame. To
resolve this bug, the developers provided a fix to the
PrivilegedOperation file (shown in Fig. 2), which is called
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Bug ID YARN-8209
Summary  NPE in DeletionService
Stack Trace

2018-04-25 23:38:41,039 WARN concurrent.ExecutorHelper (ExecutorHelper.java:logThrowableFromAfterExecute (63)):

<+ java.lang.NullPointerException
at DockerClient.writeCommandToTempFile
at DockerCommandExecutor.executeDockerCommand
at DockerCommandExecutor.executeStatusCommand
at DockerCommandExecutor.getContainerStatus
at LinuxContainerExecutor.removeDockerContainer
at DockerContainerDeletionTask.run
at java.lang.Thread.run (Thread.java:748)

(DockerClient.java:109)
(DockerCommandExecutor. java:3)
(DockerCommandExecutor. java:192)
(DockerCommandExecutor. java:128)
(LinuxContainerExecutor. java:935)
(DockerContainerDeletionTask. java:61)

Fig. 1. Stack traces extracted from the bug report YARN-8209.

during the execution shown in the second last stack frame
(atDockerCommandExecutor.executeDockerCommand(Docker
CommandExecutor.java : 3)), but not included in the stack
trace (i.e., the call to PrivilegedOperation is already popped
from the stack). Therefore, such hidden execution is invisible to
IRBL approaches. Thus, in this paper, we aim to utilize the
execution paths information that can be re-constructed from
logs to provide more information and improve bug localiza-
tion performance.

A number of studies have been conducted on multiple
faults localization [19], [20], [21]. Wong et al. [19] performed
a detailed survey on the software multiple faults localiza-
tion techniques. Zakari et al. [20] conducted a systematic lit-
erature review on multiple faults localization. Pearson et al.
[21] evaluated the effectiveness of various multiple faults
localization techniques on artificial faults (e.g., mutants)
versus real faults. In this paper, we primarily focus on sin-
gle fault localization. However, if there were logs generated
from a program with multiple faults, our approach can
potentially be applied in existing multiple faults localization
techniques to improve their effectiveness.

Below, we further discuss the related work of this paper.

Information-Based Bug Localization Approaches. Many prior
studies apply information retrieval (IR) approaches to stati-
cally locate bugs in the code using natural language text in
bug reports [3], [4], [5], [6], [7], [8], [10], [11]. Zhou et al. [3],
proposed an approach, called BugLocator, that locates buggy
files by leveraging historical similar bug reports. They com-
pute a suspiciousness score between a bug report and the

1 public class DockerCommandExecutor {

public static String executeDockerCommand
< (DockerCommand dockerCommand, ...) throws
<~ ContainerExecutionException {

PrivilegedOperation dockerOp =
< dockerCommand.preparePrivilegedOperation
< (dockerCommand, ...);

if (disableFailurelLogging) {

6
8 dockerOp.disableFailureLogging () ;
9 }

251 }

Fig. 2. Simplified source code from DockerCommandExecutor.execute
DockerCommand. The fix of YARN-8209 was applied in Privileged
Operation.

source code files based on their textual similarity. Loyola et al.
[8] and Sisman and Kak [11] found that by using past version
development history can help improve bug localization accu-
racy. Wang and Lo [6] and Saha ef al. [4] found that different
parts of bug reports (e.g., title and description) should be
assigned different weights in IR models. Liu ef al. [7] combine
statistical debugging and dynamic model slicing on top of
Simulink models to improve bug localization accuracy. Bhag-
wan et al. [10] applied differential code analysis to pin-point
the buggy commits in the development history. Lam et al. [5]
combine VSM with the deep neural network to improve the
performance of IR-based bug localization approaches. They
address the lexical mismatch problem by connecting the
terms in bug reports to their related but different code tokens
in source code files.

Different from prior studies, in this paper, we propose an
approach that uses the execution paths information re-con-
structed from logs to assist IRBL approaches. We find that our
path analysis approach is complementary to existing IRBL
approaches and improve bug localization performance.

IRBL Approaches Using Execution Information in Bug
Reports. Some prior studies leverage the system execution
information (e.g., stack traces or test case execution) in bug
reports to help locate buggy files. Dao et al. [9] leveraged the
coverage, slicing, and spectrum information in failed test
cases to improve IR-based bug localization. Wong et al. [16]
propose BRTracer, a bug-report-oriented fault localization
tool. The tool is built on top of BugLocator [3] and uses the
file names that appear in stack traces to further rank the sus-
picious files. They studied 3,459 bug reports across three
systems in which only 17 percent of the bug reports include
stack traces. In addition to stack traces, Youm et al. [22] pro-
pose a new bug localization approach, BLIA (Bug Localiza-
tion using Integrated Analysis) that integrates analyzed
data by utilizing structured information in bug reports and
source code files, code change history, similarity analysis of
existing bug reports, and stack traces.

Prior studies only leverage the “visible” information in bug
reports (e.g., stack traces). However, as shown in Figs. 1 and 2,
sometimes the hidden execution paths that can be re-con-
structed in bug reports can provide additional information
for debugging and bug localization. The most similar work is
done by Chen et al. [15], [23], where they study if the logs in
bug reports can be used to locate buggy files. They find that
logs in bug reports provide a good indication on where the
buggy files, although the provided logs may be outdated or
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Fig. 3. An overview of Pathidea.

can no longer be found in the source code. In this paper, we
leverage the stack traces and log snippets in bug reports to re-
construct the system execution paths to complement IRBL
approaches. We propose an IRBL approach called Pathidea
and we find that it achieves better performance compared to
state-of-the-arts such as BRTracer. Moreover, we find that the
hidden execution information re-constructed from our path
analysis can also help improve the performance of existing
IRBL approaches (see details in Sections 5.1 and 5.2).

3 METHODOLOGY

In this section, we first present an overview of Pathidea.
Then, we describe each step of our approach in detail.

An Qverview of Pathidea. Fig. 3 shows an overview of our
approach, which contains four major steps: (1) In the source
code analysis step, we build a Vector Space Model (VSM)
and compute an initial similarity score between the bug
report and the source code files. We denote this initial score
as VSM score. (2) In the log analysis step, we highlight the
related files that appear directly in the logs using regular
expression. Depending on the type of log, we apply differ-
ent strategies to derive a boost score (i.e., to adjust the
weight of the files), denoted as log score. (3) In the path anal-
ysis step, we re-construct the file-level execution paths from
the logs to find the files which were called during the execu-
tion time. We assign a new boost score, which we denote as
the path score, to these files. (4) Finally, we add the log and
path scores into our initial similarity score to calculate the
final suspiciousness score of a file. We rank the files based
on the suspiciousness score and derive a list of ranked files
for investigation. Below, we discuss the aforementioned
steps in detail.

Analyzing Source Code Files and Bug Reports. To analyze
the source code files and bug reports, we follow common
source code pre-processing steps [24]. We first tokenize the
source code file into a series of lexical tokens and remove
programming language specific keywords [25] (e.g., for
and while for Java). Next, we split concatenated words
based on camel case (e.g., getAverage) and underscore (e.g.,
get_average) and remove stopwords (e.g., the and and). We
use the list of stopwords from the Natural Language Toolkit
(NLTK) library in Python [26]. Finally, we perform Porter
stemming to remove morphological affixes from words and
derive their common base form (e.g., running becomes run).
As mentioned in Section 2, the output of this process is a
collection of corpus, where each document represents a
source code file. Given a bug report, we extract the lexical
tokens from the summary and description fields. To represent
each bug report as a search query, we follow the same pre-
processing steps described above.

Since larger files contain more tokens, by nature, large files
are more likely to be favored in bug localization [16]. Thus, to
treat all files equally regardless of its size, we follow a prior
study [16] by using a segmentation approach when creating
the corpus. The segmentation approach divides each file into
multiple segments of code snippets of the same size. Namely,
each document in the corpus represents a segment of code
snippets from a source code file. Then, given a bug report, the
corresponding file of the segment that has the highest suspi-
ciousness score is marked as the most suspicious file for inves-
tigation. Similar to the study by Wong et al. [16], we set the
segment size to 800 tokens.

More specifically, Formula 1 below calculates the VSM
score between a file f and a bug report br, where
SUSPICIOUSNES Sax (S€g, br) 1s the maximum cosine similarity
score between all the segments seg in f and br.

VSM Score(f, br) = suspiciousnessmax(seg, br). (1)

Analyzing Log Snippets and Stack Trace Information. Logs pro-
vide an important source of information to developers.
Prior studies [1], [13], [27], [28] have shown that developers
often leverage logs to understand how the system was exe-
cuted for debugging and testing purposes. Thus, our
approach aims to utilize both types of logs (i.e., log snippets
and stack traces) to further assist bug localization. We com-
pute additional suspiciousness scores for the files that gen-
erate the logs. We denote the additional suspiciousness
score computed from the logs as the log score.

To analyze the logs, we first capture them from a bug
report using regular expressions. In particular, for stack
traces, we check for the at keyword followed by a file name
that ends with . java. For log snippets, we look for a time-
stamp followed by a verbosity level and a fully qualified
class name. For instance, given the following log line 2015-
07-01 19:24:12,806 INFO org.apache.ZooKeeper.
ClientCnxn: Client session timed out, our regular
expression captures 2015-07-01 19:24:12,806 as the
timestamp, INFO as the verbosity level, and org.apache.
ZooKeeper.ClientCnxn as the fully qualified class
name. We use the fully qualified class name to derive its
corresponding file name. Next, we verify in the source code
repository whether the file exists. This helps us remove the
files that are part of the external libraries. Finally, we calcu-
late the log score differently for files extracted from stack
traces and from log snippets. For stack trace, we use the
rank of the file in the call stack to assess its suspiciousness
score by following a prior study [16]. If a file appears on the
top of the stack trace, it is ranked the first and receives a
higher suspiciousness score. Given a rank position i, if 4 is
within the top 10 ranks, the suspiciousness score is inversely
proportional to the rank (e.g., the second ranked file
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receives a suspiciousness score of 0.5). For any rank position
i beyond top 10, the file receives a constant suspiciousness
score of 0.1. Formula (2) below calculates the log score for
files in a stack trace.

L if rank < 10

rank

LogScore(f) =< 0.1 if rank > 10 . (2)

0 if file not found

For log snippets, we assign a constant value of 0.1 to
every mapped file. We denote this constant value as o. We
use « as a parameter to attribute a suspiciousness score to
each file mapped from log snippets. In RQ3, we further
investigate the sensitivity of the value for «.

When multiple stack traces are attached in a bug report,
we regard them as equally valuable. Therefore, to further
refine our approach, we reset the rank back to 1 when a
new stack trace begins. In log snippets, when the same file
appears multiple times, it is only computed once in the log
score. Fig. 4 shows an example of the log score computation.
The logs start with a log snippet containing two log lines:
task_r_ 1 done copying task m 0 and task r_1
Copying task_m 1. As both lines are generated by the
same file, that is ReduceTask. java, the log score is only
computed once with a constant value of 0.1. Two stack
traces follow the log snippet. The first stack trace throws a
java.lang.OutOfMemoryError, where the file Sequen-
ceFile.java appears in the first stack frame. Therefore, it
is ranked as the first place, and its log score is 1.00. Simi-
larly, the file in the second stack frame (i.e., Sequence-
File.java) receives a log score of 0.50. The second stack
trace throws a java.lang.NullPointerException, in
which InMemoryFileSystem.java, FileSystem.java
and ReduceTask.java receive their respective log score
based on their order in the stack frames (i.e., 1.00, 0.50 and
0.33, respectively).

Analyzing and Re-Constructing Execution Paths. As dis-
cussed in Sections 1 and 2, most prior studies only consider
the textual information that is available in the bug report.
Since logs can be further mapped to the source code, there
may be valuable information in the source code that can
help developers to better understand the system execution.
To this end, we analyze the logs and re-construct the poten-
tial execution paths. We describe the steps as follow.

We first extract the related methods and files that appear in
the logs. We verify that such methods and files exist in the
source code repository. Then, for each related method call, we
derive the method-level Abstract Syntax Tree (AST) using
Javaparser [29]. Javaparser is a static analysis tool that sup-
ports many Java versions and is actively maintained. The AST
tree allows us to traverse the AST nodes and find the method
calls inside each method declaration. We statically construct
the execution path from the AST tree of the method by linking
each method call into its method declaration. If a related
method call appears in the execution path, we mark it as vis-
ited. The execution path continues to expand until the last
method call in the log is visited. Once the execution path is re-
constructed, we analyze the execution order of the related
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method calls and uncover the potential execution paths. Algo-
rithm 1 shows the pseudo code of our implementation. The
algorithm takes extracted logs from bug reports as input, and
outputs the potential execution paths. First, we initiate a
global variable (line 2) executionPaths to store the re-con-
structed execution path. When we iterate through the logs,
we assign the current log at position i and the next log at posi-
tion i+1 (line 4-5). Then, the execution paths are derived from
the logs (line 6). The findPathBetween function essentially
implements the Breadth-First-Search (BFS) algorithm to tra-
verse the call graph. In this process, we record every possible
path that connects the current log to the next log. If two conse-
cutive logs are identical (i.e., have the same log template), we
remove one from the logs (e.g., the logs may be generated in a
loop). Once the execution path is re-constructed, we store it in
the local variable paths (line 6), which is then added to the
global variable executionPaths (line 7). Lastly, we return the
global variable executionPaths (line 9).

Note that a path is constructed for each sequential set of
logs (e.g., logs belong to the same thread). Thus, after we
have obtained the re-constructed execution paths, there
may be some duplicated paths due to the looping of some
logs generated at runtime by different threads. Therefore,
we compare the sequence of method calls inside each gener-
ated path and remove the duplicated paths.

In our experiment, we use a virtual machine, with a four-
core Intel Xeon (Skylake, IBRS) CPU (2.10 GHz) and 5 GB of
RAM. On average, the call graph analysis and path con-
struction take 22 minutes for the entire system, where the
size of our studied systems varies from 79k to 1.2 million
source lines of code. Note that the call graph analysis only
needs to be done once, since, in practice, we can incremen-
tally update the call graph based on the code changes in
each commit. Therefore, we believe that the additional call
graph analysis and path construction time is reasonably
acceptable and would not affect the usability of the
approach.

Algorithm 1. Execution Paths Re-Construction Algorithm

Input: Extracted Logs

Output: Execution Paths
1: procedure FINDEXECUTIONPATH(l0gs)
2:  initialise executionPaths
3:  fori=1;i <logs.length do
4 currentLog = logs.atPosition(z)
5 nextLog = logs.atPosition(i+1)
6: paths = findPathsBetween(currentLog, nextLog)
7 executionPaths.add(paths)
8: end for
9:  return executionPaths

10: end procedure

Once the execution paths are re-constructed, we compute
the path score for every file on the execution paths. We com-
pute the path score as follows:

PathScore(f, br) = B x N(VSMScore(f,br)). 3)

Given a bug report br, VSMScore(f, br) is the cosine simi-
larity score between file f and the bug report, where N is
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Logs
2008-01-07 21:02:13 INFO org.apache.hadoop.mapred.ReduceTask: task_r_1 done copying task_m_0
2008-01-07 21:02:13 INFO org.apache.hadoop.mapred.ReduceTask: task_r_1 Copying task_m_1
2008-01-07 21:02:13 WARN org.apache.hadoop.mapred.ReduceTask: java.lang.OutOfMemoryError: Java heap space
at org.apache.hadoop.io.SequenceFile$Reader.init (SequenceFile.java:1345)
at org.apache.hadoop.mapred.ReduceTask.run (ReduceTask.java:1311)
2008-01-07 21:02:31 ERROR org.apache.hadoop.mapred.ReduceTask: java.lang.NullPointerException: Map output copy failure
at org.apache.hadoop.fs.InMemoryFileSystem.close (InMemoryFileSystem.java:378)
at org.apache.hadoop.fs.FileSystem.getLength (FileSystem.java:449)
at org.apache.hadoop.mapred.ReduceTask.run (ReduceTask.java:665)
Stack Trace #2
Log Snippet #1 Stack Trace #1
0g >nippe : Rank File Log Score
. Rank File Log Score
Rank File Log Score . -
I 1 InMemoryFileSystem java 1.00
: 1 SequenceFile java 1.00 . )
1 ReduceTask.java 0.10 ’ ReduceTask iava 0.50 2 FileSystem.java 0.50
] ’ 3 ReduceTask.java 0.33

Fig. 4. An example of the log score computation when there are log snippet and multiple stack traces.

the normalization function that normalizes VSMScore(f, br)
to a value in the range of between 0 and 1, and B denotes
the weight of VSMScore(f,br), that is between 0 and 1.
When a file appears on the path, the parameter g boosts the
suspiciousness score to favor the files that were on the exe-
cution path. The buggy files may be one of the files that are
on the execution path [13]. By introducing the path score,
we are able to better distinguish the relevant files on the exe-
cution path from the less relevant files. In our study, we set
B to 0.2 (we evaluate the effect of 8in RQ3).

We explain the aforementioned path score computation
in detail with Fig. 5 that serves as our running example. We
derive the running example from a real bug report. We sim-
plify the code for the ease of explanation and limit the call
graph to a depth of one. In this example, our goal is to
derive the execution path from the logs and compute the
path score. This process of re-constructing the execution
path is analogous to the sailing boat traveling back to the
shore. The idea is that the running execution (the sailing
boat) navigates through the logging statements (the bea-
cons) in order to reach the potentially buggy classes (the
shore). First, the logging statements are an analogy of
”beacons”. The running execution finds and connects each
of the logging statements in order to reconstruct the execu-
tion path. Starting from the reported logs, each log line is
mapped to its corresponding logging statement by match-
ing the static part of the logging statement. In our running
example, by comparing each log line to the static part of the
logging statements, we find that the log line “2019-01-07
21:02:13 INFO ReduceTask: task_r_1 initialized” is generated
by the logging statement at line 3, and the log line “2019-01-
07 21:02:13 INFO ReduceTask: runNewReducer called” is pro-
duced by the logging statement at line 12. Based on this
information, we re-construct the execution path by connect-
ing these two logging statements, and find the call path [2—
6, 11-16] that contains both of the logging statements at line
3 and 12. Since the logging statement at line 18 is not exe-
cuted nor recorded, the analysis excludes runOIdReducer()
in the execution path. Then, the classes that appear on the
execution path are treated as the potentially buggy classes.
The list of classes collected in our running example are:
JobConfiguration, Reducer, and Context. Note that only the
classes that are relevant to the project are collected. As these

classes might have data dependencies with the bug (or even
contain the bug), we assign a PathScore to the files that con-
tain these classes to boost their suspiciousness score based
on Formula (3).

Calculating the Final Suspiciousness Score. To incorporates
the vector space model, log analysis and path analysis into
one combined component, we calculate the final suspisi-
ciousness score by summing up the normalized VSM score,
log score, and path score (as shown in Formula (4)).

FinalScore(f,br) = N(VSMScore(f,br))
+ LogScore(f,br) + PathScore(f,br).
4)

4 CASE STUDY SETUP

Data Collection. We evaluate the performance of our pro-
posed bug localization approach on the bug reports, which
contain logs (i.e., either log snippets, stack traces, or both),
collected from eight open source systems. These systems
are large in size, actively maintained, well-documented,
and cover various domains ranging from big data process-
ing to message brokers. For each system, we collect the bug
reports as follows. The bug reports for all eight studied sys-
tems are available on the JIRA bug tracking repository [30].
Therefore, we implement a web crawler to collect bug
reports from JIRA. We first select the bug reports that have
the resolution status labeled as “Resolved” or “Fixed”, the
priority field is marked as “Major”, “Critical”, or “Blocker”,
and the creation date is 2010 or later. We download these bug
reports in JSON format using the JIRA API [31]. Then, we
examine the source code repository to further select the bug
reports that have corresponding bug fixes by following
prior studies [32], [33]. All the studied systems follow the
convention to include the bug report identifier (e.g.,
HADOOP-1234) at the start of the commit messages (e.g.,
HADOOP — 1234 FixatypoinFileA.java) [34] and host the
source code on Github. Therefore, we run the git command,
git log | grep bug_report_identifier[~\d], to
check if a bug report identifier exists in any commit mes-
sage. If a bug report identifier appears in a commit message,
then there is a bug fix for the bug and we identify the
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Logs

@D 2019-01-07 21:02:13 INFO ReduceTask: task_r_ 1 initialized
® 2019-01-07 21:02:13 INFO ReduceTask: runNewReducer called
® 2019-01-07 21:02:13 INFO ReduceTask: task_r_1 done

Code Snippets Execution Class boosted by path
1 class ReduceTask { o -

2 void run_task (String task_id, JobConfiguration job) { o -

3 log.info(task_id + ’ initialized’); //@ L4 -

4 boolean useNewApi = job.getUseNewReducer () ; o ]obConﬁguraﬁon
5 if (useNewApi) { ° -

6 runNewReducer () ; L -

7 } else { o -

8 runOldReducer () ; o -

9 } o -

10 log.info (id + ’"done’); //® . -

11 void runNewReducer () { L] -

12 log.info (' runNewReducer called’); //Q@ o -

13 Reducer reducer = createReducer (job); o Reducer
14 Context context = createReduceContext (); L4 Context
15 reducer.run (context) ; ® -

16 } o -

17 void runOldReducer () { ] -

18 log.info (’ runOldReducer called’); o -

19 ReduceValuesIter values = new ReduceValuesIter(); o -

20 values.informReduceProcess () ; © -
22y ° -

Fig. 5. An example of the execution path analysis for path score computation.

commiit as the bug fixing commit. Finally, to reduce noise,
we exclude the bug reports in which no Java files were mod-
ified in the bug fixes. At the end of this process, we collected
a total of 6,535 bug reports in the eight studied systems.
After collecting the bug reports that have corresponding
bug fixes, we further categorize the bug reports into with
logs and without logs.

Table 1 shows an overview of the bug reports that we col-
lected. We denote bug reports with logs as BRWL and bug
reports without logs as BRNL. In total, there are 1,273 bug

reports with logs and 5,262 bug reports without logs.
Although there are fewer bug reports with logs, the number
is still non-negligible (around 20 percent of all bug reports).
Thus, if we can leverage the embedded information in logs,
we may better help improve bug localization.

Metrics for Evaluating Pathidea. To evaluate the effectiveness
of our approach, we consider several commonly-used evalua-
tion metrics for IR-based bug localization approaches [6], [12],
[35]. First, we calculate the precision, recall, and F1-measure
for the Top@N results (i.e., when examining the highest

TABLE 1

An Overview of Our Studied Systems, Where BRWL Denotes Bug Reports With Logs,
and BRNL Denotes Bug Reports Without Logs

System LOC # Bug reports # BRWL # BRNL
ActiveMQ 338k 594 86 (14%) 508 (86%)
Hadoop Common 190k 725 257 (35%) 468 (65%)
HDFS 285k 1,166 229 (20%) 937 (80%)
MapReduce 198k 575 166 (29%) 409 (71%)
YARN 548k 576 241 (42%) 335 (58%)
Hive 1.2M 2,231 195 9%) 2,036 (91%)
Storm 275k 380 61 (16%) 319 (84%)
ZooKeeper 79k 288 38 (13%) 250 (87%)
Total 3.1IM 6,535 1,273 5,262
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ranked N files). Then, we calculate the mean average preci-
sion and mean reciprocal rank. Below, we briefly describe
each of these metrics.

Precision@N. Given Top@N, the precision metric calcu-
lates the percentage of buggy files that are correctly located in
the highest ranked N files. Precision@N is calculated as

#buggy filesintop N

PrecisionQN =
recision N

(5)

Recall@N. Given Top@N, the recall metric calculates the
percentage of buggy files (out of all buggy files) that were
located in the highest ranked NV files. Recall@N\ is calculated as

#buggy filesintop N

RecalloN =
eea F#totalbuggy files

(6)

F1@N. Fl-measure, also called F1 score is the weighted
harmonic mean of precision and recall. This metric calcu-
lates the Top@N accuracy of the ranked results and offers a
good trade-off between the precision and recall. F1 score is
calculated as

Precision@QN - Recall@ N

F1aN =2 - .
Precision@N + Recall@N

(7)

Mean Average Precision (MAP). MAP considers the ranks
of all buggy files instead of only the first one. MAP is com-
puted by taking the mean of the average precision across all
bug reports. This metric is a commonly used in evaluating
IR-based bug localization approach with ranked results.
The average precision is calculated as

m

Mean Reciprocal Rank (MRR). The reciprocal rank calcu-
lates the reciprocal of the position at which the first buggy
file is found. MRR is the mean of reciprocal rank across all
bug reports. Formula (9) calculates the mean reciprocal
rank, where K denotes a set of bug reports, and rank; is the
rank of the first buggy file in the ith bug report.

1L 1
MRR = — . 9
K;mnki ©)

5 CASE STuDY RESULTS

In this section, we discuss the results of our three research
questions (RQs).

5.1 RQ1: Effectiveness of Pathidea Over
State-of-the-Art Approaches

Motivation. Most prior research that uses information retrie-

val for bug localization (IRBL) only considers the textual

information that is available in the bug report. Although

logs contain textual information of the occurred events, logs

can also be further mapped to source code and assist
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developers with understanding the system execution dur-
ing debugging and maintenance [13], [14]. Such system exe-
cution information may further help improve the
performance of IRBL approaches. Therefore, in this RQ, we
want to compare Pathidea with existing IRBL approaches.

Approach. As discussed in Section 3, for each bug report,
we compute the final suspiciousness score for the files in
the corresponding commit. We choose to use the commit
that is prior to the bug fixing commit to avoid biases. We
compare the performance of Pathidea with two baseline
IRBL approaches. A recent study [35] shows that, among
state-of-the-art IRBL approaches, BRTracer achieves the
best results in terms of MAP and MRR. In addition, similar
to Pathidea, BRTracer uses information in stack traces to
improve bug localization results [16]. Hence, for the first
baseline, we compare our approach with BRTracer. For the
second baseline, we compare Pathidea with the vanilla
approach that uses the basic vector space model (VSM) for
bug localization. We apply the approaches on all eight stud-
ied systems and compare their performance in terms of pre-
cision, recall, and F1-measure at the top 1, top 5, and top 10
ranked files. We also compare the MAP and MRR scores of
the approaches. Finally, we use the Wilcoxon rank-sum test
to investigate whether Pathidea achieves a statistically sig-
nificant improvement over the baselines. We choose the
Wilcoxon rank-sum test since it is a non-parametric test that
does not have an assumption on the distribution of the
underlying data [36].

Result. Pathidea Significantly Outperforms BRTracer and
VSM in all Studied Systems With Respect to all Evaluation Met-
rics. Table 2 compares the results between VSM, BRTracer,
and Pathidea. We find that for every studied system, VSM
performs the worst among the three IRBL approaches.
Thus, we focus our comparison between BRTracer and
Pathidea. The numbers in the parentheses show the percent-
age of the improvement of Pathidea over BRTracer. Com-
pared to BRTracer, Pathidea achieves an average MAP of 35
percent across the studied systems, which is a 13 percent
improvement over that of BRTracer (i.e., 31 percent). Across
the studied systems, the improvement in MAP varies from
8 to 24 percent. For MRR, Pathidea achieves an average of
43 percent across the studied systems, which is a 12 percent
improvement over that of BRTracer (i.e., 38 percent).

Pathidea Achieves an Average Recall@10 of 50.3 percent,
Which Shows That It Can Identify Half of the Buggy Files in a
Relatively Short List. Pathidea shows a large improvement in
terms of Precision@N and Recall@N. Pathidea achieves, on
average, 16, 12, and 11 percent improvement in Pre-
cision@1, 5, 10, respectively. For the average Recall@1, 5, 10,
we see 20, 14, and 10 percent improvement, respectively.
Regarding the F1-measures, Pathidea achieves an improve-
ment between 15.5 and 31 percent for Top@1, and between
13.8 and 24.0 percent for Top@5. The average precision val-
ues indicate that 30.6 percent of the located files are actually
buggy at Top@1, 13.6 percent at Top@5, and 8.2 percent at
Top@10. The high average recall values indicate that Pathi-
dea can locate 22.3 percent of all the buggy files at Top@1,
44.7 percent at Top@5, and 50.3 percent at Top@10. Note
that since the number of buggy files is often small (i.e., the
median number of buggy files is three in the studied sys-
tems), it is difficult to achieve a high precision in the ranked
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TABLE 2
Comparisons of Results Between VSM, BRTracer and Pathidea
System Approach Top@1 Top@5 Top@10 MAP MRR
Precision(%)  Recall(%) F1(%) Precision(%)  Recall(%) F1(%) Precision(%)  Recall(%) F1(%)

VSM 7.0 3.6 4.7 4.7 14.9 7.1 34 20.2 5.8 0.11 0.15

ActiveMQ BRTracer 233 16.6 194 109 33.5 16.5 6.9 40.1 11.7 0.28 0.34
Pathidea 29.1 (+25%) 21.4 (+29%)  24.6 (+27%)  14.4 (+32%) 43.7 (+30%)  21.7 (+32%) 9.0 (+31%) 48.3 (+21%) 151 (+29%)  0.34 (+21%)  0.41 (+21%)

Hadoop VSM 14.0 9.8 11.5 7.5 243 114 5.1 319 8.8 0.20 0.23

c BRTracer 33.1 244 28.1 13.2 441 20.3 7.8 50.6 13.5 0.37 0.44

ommon Pathidea  36.2 (+9%) 27.2 (+11%) 310 (+10%) 139 (+6%) 469 (+7%)  21.5 (+6%) 8.2 (+5%) 53.4 (+6%) 142 (+5%)  0.40 (+8%)  0.47 (+7%)

VSM 162 10.6 12.8 10.1 303 152 7.1 389 12.0 0.23 0.29

HDFS BRTracer 25.8 194 22.1 14.3 448 21.7 9.1 53.2 15.6 0.35 0.41
Pathidea  31.9 (+24%)  23.8 (+23%) 27.2 (+23%) 158 (+10%)  50.4 (+12%) 24.0 (+10%) 9.9 (+8%) 57.7 (+9%)  16.9 (+8%)  0.40 (+14%)  0.46 (+12%)
VSM 133 9.1 10.8 65 214 10.0 42 27.7 73 0.17 0.21

MapReduce BRTracer 187 13.8 15.9 10.7 38.4 16.8 6.4 444 11.2 0.27 032
Pathidea 22.3 (+19%) 17.1 (+24%) 19.4 (+22%) 11.2 (+4%) 41.1 (+7%) 17.6 (+5%) 6.6 (+3%) 46.5 (+5%) 11.5 (+3%) 0.30 (+11%) 0.35 (+9%)
VSM 14.9 9.7 11.7 8.4 26.1 12.7 56 342 9.6 0.20 0.25

YARN BRTracer  27.0 18.9 222 13.7 45.0 21.0 8.0 52.1 139 0.34 0.42
Pathidea 35.3 (+31%) 26.0 (+38%)  30.0 (+35%)  15.4 (+12%) 51.9 (+15%)  23.7 (+13%) 8.7 (+8%) 56.8 (+9%) 15.0 (+8%) 0.41 (+21%)  0.48 (+14%)
VSM 9.7 52 6.8 72 17.7 10.2 54 269 9.0 0.15 0.20

Hive BRTracer ~ 37.4 239 292 13.9 403 20.7 7.8 444 133 0.35 0.46
Pathidea  37.4 (+0%) 241 (+1%) 293 (+0%) 155 (+11%)  47.5 (+18%) 23.4 (+13%) 8.8 (+12%)  53.1 (+20%) 15.1 (+13%) 0.38 (+9%)  0.50 (+9%)
VSM 18.0 11.7 14.2 9.8 282 14.6 59 33.8 10.0 0.22 0.28

Storm BRTracer 32.8 225 26.7 12.5 409 19.1 7.5 47.6 13.0 0.33 0.42
Pathidea 34.4 (+5%) 25.0 (+11%)  29.0 (+8%) 14.1 (+13%) 45.7 (+12%)  21.5 (+13%) 8.2 (+9%) 50.5 (+6%) 14.1 (+8%) 0.37 (+12%)  0.45 (+5%)
VSM 53 2.8 37 3.2 9.0 47 29 149 48 0.10 0.12

ZooKeeper BRTracer 13.2 9.4 11.0 79 26.3 12.1 5.0 32.0 8.6 0.21 0.24
Pathidea 18.4 (+40%) 13.4 (+42%) 155 (+41%) 8.9 (+13%) 30.2 (+15%)  13.8 (+14%) 5.8 (+16%) 36.1 (+13%)  10.0 (+15%)  0.25 (+19%)  0.29 (+21%)

Average across BRTracer 26.4 18.6 21.8 12.1 39.2 18.5 7.3 45.6 12.6 0.31 0.38

studied systems ~ Pathidea 30.6 (+16%) 22.3 (+20%)  25.8 (+18%)  13.6 (+12%) 44.7 (+14%) 209 (+13%) 8.2 (+11%) 50.3 (+10%)  14.0 (+11%) 0.35 (+13%)  0.43 (+13%)

For each metric, we calculate the percentage of improvements that Pathidea achieves over BRTracer.

results. However, our approach is able to achieve a rela-
tively high recall within a small N. Hence, by only investi-
gating a small number of files, developers may identify
around half of the buggy files. We also use the Wilcoxon
rank-sum test [37] to examine whether the improvements of
Pathidea over BRTracer are statistically significant. Our
results show that the improvements are statistically signifi-
cant in terms of MAP, MRR, recall, and precision values (p-
value < 0.05).

Across the studied systems, Pathidea achieves an
improvement that varies from 8 to 21 and 5 to 21 percent
over BRTracer in terms of MAP and MRR across the
studied systems, respectively. We also find that both
Pathidea and BRTracer outperform the vanilla VSM in
identifying buggy files. Moreover, Pathidea can identify
buggy files with an average Recall@10 of 50.3 percent.

5.2 RQ2: Effectiveness of Path Analysis

Motivation. Previous studies [16], [38] leveraged logs to
improve the ranking of the potential buggy files for fur-
ther investigation. However, these approaches either
directly consider logs (i.e., stack traces) as plain text, or
only retrieve the files that appear directly in logs. In prac-
tice, developers not only examine the logs, but they also
leverage the logs to re-construct the run-time execution
paths of the system for debugging [13], [14]. Such path
information may be helpful to not only Pathidea but also
other IRBL approaches. Therefore, in this RQ, we study
the effect of the path analysis on the performance of exist-
ing IRBL approaches.

Approach. Our goal is to study how much additional
improvement can path analysis provide to IRBL approaches.

Thus, we first examine the effectiveness of Pathidea with and
without path analysis. Then, we further study if path analysis
can help improve existing IRBL approaches. In particular, we
apply path analysis to BRTracer, because it is shown to
have one of the highest MAP and MRR among the IRBL
approaches [35]. Moreover, BRTracer leverages logs for bug
localization (i.e., the class names that are recorded in stack
traces), so we can study if path analysis provides additional
information to BRTracer’s log analysis. We also use the Wil-
coxon signed-rank test [37] to investigate whether our path
analysis provides a statistically significant improvement to
these two IRBL approaches.

Result. Considering Path Analysis Improves the Overall Effec-
tiveness of Pathidea by up to 20 percent in Terms of the Evalua-
tion Metrics. Table 3 compares the results of Pathidea when
considering different components. We show the evaluation
metrics when different components are considered and
evaluate the improvement over the VSM baseline. We focus
on evaluating the effectiveness of Pathidea with and with-
out path analysis. Specifically, when considering path anal-
ysis (i.e., VSM + log + path), Pathidea has an improvement
of MAP that varies from 4 to 20 percent over the ones with-
out path analysis (i.e., VSM + log) across the studied sys-
tems. The improvement of MRR varies from 4 to 17 percent
across the studied systems. We also observe an average
improvement of 14, 4, and 4 percent on Precision@1, 5, 10,
respectively. For the average recall values, the improve-
ments are 23, 6, and 3 percent for Recall@l, 5, 10, respec-
tively. The Wilcoxon signed-rank test also shows that, for
all the studied systems, the improvements are statistically
significant for Recall@1, Recall@5, Precision@1, Precision@5,
and F1@1 (p-value < 0.05). Our finding shows that the path
analysis is able to help promote the ranking of the buggy
files in the result.



2914

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 8, AUGUST 2022

Comparisons of Pathidea’s Results When Considering Different Components
System Approach Top@1 Top@5 Top@10 MAP MRR
Precision(%)  Recall(%) F1(%) Precision(%)  Recall(%) F1(%) Precision(%)  Recall(%) F1(%)

VSM 7.0 36 47 47 149 7.1 34 20.2 5.8 0.11 0.15

ActiveMQ VSM + log 267 (+283%)  18.6 (+416%)  21.9 (+362%) 12.8 (+175%) 39.1 (+162%) 19.3 (+172%) 8.7 (+159%)  47.1 (+133%) 14.7 (+155%) 0.32 (+191%)  0.39 (+160%)
VSM + log + path  29.1 (+317%)  21.4 (+495%)  24.6 (+419%) 14.4 (+210%) 437 (+193%) 217 (+206%) 9.0 (+166%) 483 (+140%) 15.1 (+161%) 034 (+209%)  0.41 (+173%)

Hadoop VSM 14.0 9.8 115 75 243 114 5.1 31.9 8.8 0.20 023

e VSM + log 35.4 (+153%) 259 (+165%)  29.9 (+160%) 13.8 (+84%) 462 (+90%)  21.2 (+86%) 8.1 (+59%) 526 (+65%)  14.0 (+60%)  0.39 (+95%)  0.46 (+100%)

ommon VSM +log + path 362 (+158%)  27.2 (+177%)  31.0 (+169%) 13.9 (+86%) 469 (+93%) 215 (+88%) 8.2 (+60%)  53.4 (+68%)  14.2 (+61%)  0.40 (+100%)  0.47 (+104%)

VSM 16.2 10.6 12.8 10.1 303 15.2 7.1 389 12,0 0.23 029

HDFS VSM + log 30.1 (+86%) 223 (+110%)  25.7 (+100%) 158 (+56%)  50.1 (+66%) 240 (+58%) 9.8 (+39%)  57.4 (+47%) 168 (+40%)  0.38 (+65%) 045 (+55%)
VSM + log + path 319 (+97%)  23.8 (+123%)  27.2 (+112%) 158 (+56%)  50.4 (+67%)  24.0 (+58%) 9.9 (+40%)  57.7 (+48%) 169 (+41%)  0.40 (+74%)  0.46 (+59%)
VSM 133 9.1 10.8 65 214 10.0 42 27.7 73 0.17 021

MapReduce VSM + log 205 (+55%) 156 (+71%)  17.7 (+64%) 111 (+70%) 405 (+89%)  17.4 (+74%) 65 (+54%) 455 (+65%) 114 (+56%)  0.28 (+65%) 033 (+57%)
VSM + log + path ~ 22.3 (+68%)  17.1 (+88%)  19.4 (+79%) 112 (+72%) 411 (+92%)  17.6 (+76%) 6.6 (+56%)  46.5 (+68%) 115 (+57%)  0.30 (+76%) 035 (+67%)
VSM 14.9 9.7 117 8.4 26.1 12.7 56 342 9.6 0.20 025

YARN VSM + log 332 (+122%) 235 (+142%)  27.5 (+134%) 149 (+78%) 504 (+93%)  23.0 (+82%) 8.6 (+54%) 565 (+65%) 149 (+56%) 039 (+95%)  0.47 (+88%)
VSM + log + path 353 (+136%)  26.0 (+169%)  30.0 (+155%) 154 (+83%) 519 (+99%)  23.7 (+87%) 8.7 (+56%)  56.8 (+66%)  15.0 (+57%)  0.40 (+100%)  0.48 (+92%)
VSM 9.7 5.2 6.8 72 17.7 10.2 54 269 9.0 0.15 0.20

Hive VSM + log 369 (+279%)  22.7 (+336%)  28.1 (+314%) 153 (+113%) 467 (+164%) 23.0 (+125%) 8.6 (+60%) 520 (+93%)  14.8 (+65%)  0.37 (+147%)  0.49 (+145%)
VSM + log + path ~ 37.4 (+284%)  24.1 (+362%) 29.3 (+331%) 155 (+116%) 47.5 (+168%) 23.4 (+129%) 8.8 (+64%)  53.1 (+98%) 151 (+69%)  0.38 (+153%)  0.50 (+150%)
VSM 18.0 11.7 142 9.8 282 14.6 5.9 33.8 10.0 0.22 028

Storm VSM + log 32.8 (+82%) 233 (+99%)  27.3 (+92%)  14.4 (+47%) 473 (+68%)  22.1 (+52%) 82 (+39%)  50.5 (+49%)  14.1(+40%)  0.36 (+64%) 044 (+57%)
VSM + log + path  34.4 (+91%)  25.0 (+113%)  29.0 (+104%)  14.1 (+43%) 457 (+62%)  21.5(+48%) 82 (+39%)  50.5 (+49%)  14.1(+40%) 037 (+68%)  0.45 (+61%)
VSM 53 2.8 3.7 32 9.0 47 29 149 48 0.10 0.12

ZooKeeper VSM + log 15.8 (+200%) 12,0 (+325%) 137 (+271%) 8.4 (+167%)  27.6 (+208%) 129 (+176%) 53 (+82%)  33.3 (+124%) 9.1 (+88%) 023 (+130%)  0.27 (+125%)
VSM + log + path ~ 18.4 (+250%)  13.4 (+371%) 155 (+320%) 8.9 (+183%)  30.2 (+237%) 13.8 (+196%) 58 (+100%)  36.1 (+143%) 10.0 (+106%)  0.25 (+150%)  0.29 (+142%)

Average across  VSM 123 7.8 95 72 215 10.7 5.0 28.6 8.4 0.17 022

studied systems ~ VSM + log 289 (+135%) 205 (+162%) 240 (+152%)  13.3 (+86%) 435 (+102%) 204 (+90%) 8.0 (+61%) 494 (+73%) 137 (+63%)  0.34 (+97%) 041 (+91%)

VSM + log + path

30.6 (+149%)

22.2 (+185%)

25.8 (+170%)

13.6 (+90%)

44.7 (+108%)

20.9 (+95%)

8.2 (+65%)

50.3 (+76%)

14.0 (+66%)

0.35 (+106%)

0.43 (+97%)

For each added component, we show the percentage of improvements over the VSM baseline.

When Applying Path Analysis on an Existing IRBL Approach
(i.e., BRTracer), There is a 10 and 8 percent Improvement in
Terms of MAP and MRR, Respectively. Table 4 compares the
results of BRTracer with and without considering path
analysis. We observe that, when considering path analysis,
the MAP and MRR of BRTracer receive a 10 and 7 percent
improvement, respectively. We also observe an improve-
ment on the precision, recall, and F1, and most notably on
Precision@1 and Recall@1. Specifically, the path analysis
improves the average precision values by 12, 5, 5 percent
for Precision@1, 5, 10, respectively. The improvement on
the average recall values are 14, 5 4 percent for
Recall@1, 5,10, respectively. Our finding shows that the
path analysis may provide the largest improvement to

BRTracer especially when N equals to 1. The Wilcoxon
signed-rank test shows that, for all studied systems, the
improvements are statistically significant for precision,
recall, and F1. Compared to Table 3, we find that the path
analysis provides more improvement to BRTracer com-
pared to Pathidea. For example, in YARN, adding the
path analysis to BRTracer improves all the evaluation met-
rics when Top@1 (from 28 to 30 percent), where as the
improvement in Pathidea is only 6 to 11 percent. Our find-
ing shows that the path analysis can provide additional
information to not only Pathidea, but also other IRBL
approaches (e.g., BRTracer). Future studies may consider
integrating the path information to improve bug localiza-
tion performance.

TABLE 4
Comparisons of BRTracer’s Results With and Without Path Analysis
System Approach Top@1 Top@5 Top@10 MAP MRR
Precision(%)  Recall(%) F1(%) Precision(%)  Recall(%) F1(%) Precision(%)  Recall(%) F1(%)
ActiveMQ BRTracer 233 16.6 19.4 10.9 33.5 16.5 6.9 40.1 11.7 0.28 0.34
BRTracer + path  26.7 (+15%) 19.1 (+15%) 223 (+15%)  12.1 (+11%) 36.7 (+10%)  18.2 (+10%) 7.2 (+5%) 42.0 (+5%) 12.3 (+5%) 0.30 (+7%) 0.37 (+8%)
Hadoop BRTracer 33.1 244 28.1 13.2 441 203 7.8 50.6 135 0.37 0.44
Common BRTracer + path  35.0 (+6%) 26.4 (+8%) 30.1 (+7%) 13.9 (+6%) 46.6 (+6%) 21.4 (+6%) 8.1 (+4%) 52.3 (+3%) 14.0 (+4%) 0.39 (+5%) 0.46 (+5%)
HDFS BRTracer 25.8 194 221 14.3 448 21.7 9.1 53.2 15.6 0.35 0.41
BRTracer + path ~ 30.1 (+17%) 22.8 (+18%)  25.9 (+17%)  15.1 (+5%) 47.5 (+6%) 22.9 (+6%) 9.7 (+6%) 56.3 (+6%) 16.5 (+6%) 0.38 (+9%) 0.45 (+10%)
MapReduce BRTracer 18.7 13.8 159 10.7 38.4 16.8 6.4 444 112 0.27 0.32
P BRTracer + path 211 (+13%)  16.3 (+18%)  18.4 (+16%)  10.7 (0%) 395 (+3%)  16.9 (+1%) 6.4 (0%) 44.8 (+1%)  11.2 (0%) 0.29 (+7%)  0.33 (+3%)
YARN BRTracer 27.0 18.9 222 137 45.0 21.0 8.0 52.1 13.9 0.34 0.42
BRTracer + path  34.4 (+28%) 24.9 (+32%)  28.9 (+30%)  14.9 (+8%) 49.5 (+10%)  22.9 (+9%) 8.4 (+5%) 54.7 (+5%) 14.6 (+5%) 0.39 (+15%)  0.48 (+14%)
Hive BRTracer 37.4 239 29.2 13.9 40.3 20.7 7.8 44.4 13.3 0.35 0.46
BRTracer + path ~ 37.4 (0%) 24.3 (+2%) 29.5 (+1%) 14.3 (+2%) 42.0 (+4%) 21.3 (+3%) 7.9 (+1%) 45.6 (+3%) 13.5 (+2%) 0.36 (+3%) 0.47 (+2%)
Storm BRTracer 32.8 22.5 26.7 12.5 40.9 19.1 7.5 47.6 13.0 0.33 0.43
BRTracer + path ~ 32.8 (0%) 22.5 (0%) 26.7 (0%) 12.5 (0%) 409 (0%) 19.1 (0%) 7.4 (2%) 471 (-1%)  12.8(2%)  0.33 (0%) 0.43 (0%)
ZooKeeper BRTracer 13.2 9.4 11.0 79 26.3 12.1 5.0 32.0 8.6 0.21 0.24
P BRTracer + path ~ 18.4 (+40%) 13.4 (+42%) 155 (+41%) 8.4 (+7%) 27.6 (+5%) 12.9 (+6%) 6.1 (+21%) 36.3 (+14%)  10.4 (+20%)  0.25 (+19%)  0.29 (+21%)
Average across BRTracer 26.4 18.6 21.8 121 39.2 185 7.3 45.6 126 0.31 0.38
studied systems ~ BRTracer + path ~ 29.5 (+12%) 21.2 (+14%)  24.7 (+13%)  12.7 (+5%) 41.3 (+5%) 19.5 (+5%) 7.7 (+5%) 47.4 (+4%) 13.2 (+5%) 0.34 (+10%)  0.41 (+8%)

For each added component, we show the percentage improvement over the original BRTracer.
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Fig. 6. Effect of « and g on Pathidea in terms of MAP and MRR.

The re-constructed execution paths can complement
BRTracer by providing a 10 and 8 percent improvement
in MAP and MRR, respectively. We also find that Pathi-
dea provides an average of 16 percent improvement
over BRTracer on Precision@l. Future IRBL research
may consider combining information in the source code
(e.g., execution paths re-constructed from logs) to further
improve bug localization performance.

5.3 RQ3: Parameter Sensitivity of Pathidea

Motivation: As mentioned in Section 3, Pathidea uses two
parameters « and B to calculate the final suspiciousness
score. In each system, there may be some system-specific
characteristics (e.g., lexical similarity, semantic redundancy
of source code, and log density) that make the contribution
of one component more important than others. For instance,
if a system allocates a significant amount of effort on
improving and maintaining logging statements for debug-
ging, then the attached logs in the bug reports may contain
more information compared to other systems. In such case,
we may want to attribute more weight to the o parameter
which is related to the logging statements. Therefore, in this
RQ, we want to further investigate the sensitivity of the
parameters on the overall effectiveness of Pathidea.
Approach. The parameter « serves to attribute a suspi-
ciousness score to each file that appears in the logs (i.e., cal-
culating LogScore in Equation (2)). The parameter $ serves
as a magnifier that adjusts the weight of VSMScore to favor
the files on the re-constructed execution paths (i.e., calculat-
ing PathScore in Equation (3)). To understand the effect of
these parameters on Pathidea, we perform a sensitivity
analysis on the parameters separately by changing the

(b) Effect of 8 value.

T T T T T T T T T T
01 02 03 04 05 06 07 08 09 10

Value of B

values between 0.1 to 1.0, with an interval of 0.1, to quantify
their effects in terms of the MAP and MRR values.

Result. Overall, the MAP and MRR Values Reach the Highest
When o and B are in the Range of 0.1 and 0.2. However, We Also
Observe Some Variations Among the Studied Systems. Fig. 6a
shows the effectiveness of Pathidea when varying the parame-
ter . We observe a relatively stable impact of « across the stud-
ied systems. For Hadoop Common, Hive, MapReduce, YARN
and ZooKeeper, when « increases from 0.1 to 0.2, we observe
an improvement in terms of the MAP and MRR values. From
0.3 to 0.7, the MAP and MRR values remain relatively stable.
Starting from 0.8 to 1.0, the MAP and MRR values decrease.
The effect of « on ActiveMQ is different from the other sys-
tems. In ActiveMQ, the values of MAP and MRR decrease
when the parameter o value increases. For MapReduce and
Storm, the MAP and MRR values remain stable no matter how
the parameter « varies. Fig. 6b shows the effectiveness of Pathi-
dea when varying the parameter f. Almost all systems achieve
the highest MAP and MRR values when g is between 0.1 and
0.2. The further increase of 8 does not improve the MAP and
MRR values for AMQ, MapReduce and Storm. In these three
systems, the values of MAP and MRR decrease when g varies
from 0.3 to 1.0. In summary, practitioners and future studies
may consider setting the value of « and B between the range of
0.1 and 0.2 when applying Pathidea.

In general, Pathidea has the highest MRR and MAP values
when the values of « and B are in the range of 0.1 and 0.2.
Practitioners and future studies may consider choosing
these values when integrating or applying Pathidea.

6 DiIsSCuUSSION

Studying the Effectiveness of the Path Analysis When Added to
BRTracer. In Section 5.2 (RQ2), we observe that Storm and
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Hive experience the least improvement when applying the
path analysis on BRTracer (i.e., Table 4). In Hive, the
improvements are 3 percent for MAP and 2 percent for
MRR; and in Storm, the improvements for MAP and MRR
are both 0 percent. After some investigation, we find that
there is one possible factor that may be correlated with the
relatively lower improvement when the path analysis is
applied to BRTracer. We find that, among all the studied
systems, Storm and Hive have the largest percentage of bug
reports that contain only stack traces. 86.5 and 69.8 percent
of the bug reports with logs contain only stack traces but no
log snippets in Hive and Storm, respectively. On the other
hand, there is only an average of 50.7 percent of such bug
reports in other studied systems. A prior study [39] finds
that many of the bug fixing locations may not be directly
related to the reported stack traces. The stack traces may
only show the symptom of the bug (e.g., NullPointerExcep-
tion), but the actual bug may manifest in a file that was
called earlier during the execution (e.g., developers did not
check the returned value in earlier method calls, which
eventually results in a NullPointerException). Therefore, it
may be possible that some buggy files are not related to the
files on the re-constructed paths. In other words, path analy-
sis may be less effective on the bug reports that only have
stack traces than the ones that have both stack traces and
log snippets. Note that the path analysis still has a relatively
larger improvement for Storm and Hive when added to
Pathidea. The possible reason may be that Pathidea has a
different log score computation than BRTracer, which may
provide larger improvements to the bug reports that contain
log snippets. Future studies are needed to further under-
stand the effect of log quality on the bug localization
performance.

Another possible factor that affects the effectiveness of
path analysis is the log density of a system. The log density
is calculated by the ratio between thousands of lines of log-

ging code and LOC (

noise would be introduced when re-constructing an execu-
tion paths with the reported log snippets if the log density
is higher. To test our assumption, we calculate the log den-
sity of all the studied systems (Table 5). For instance,
when considering path analysis on either Pathidea or
BRTracer, we observe a substantial improvement in Zoo-
Keeper (i.e., it has the highest log density among all
studied systems) under all metrics. Specifically, when the
path analysis is applied on BRTracer, the metrics of
Precision@1, Recall@1 and F1Q1 increase by 40, 42 and 41
percent, respectively. The improvement is 19 percent for
MAP, and 21 percent for MRR. ZooKeeper has the highest
log density (Table 5). There is one line of logging code for
every 33 lines of code. In Hive, where its log density is the
lowest among the studied systems, we observe that the
improvements are relatively small. Future studies are
needed to examine the effect of log density on the effec-
tiveness of the re-constructed execution paths in bug
localization.

Effectiveness of Segmentation. Table 6 shows the effective-
ness of segmentation at different segment sizes. We evalu-
ate the effectiveness based on Precision@1, Precision@5,
Precision@10, MAP and MRR. We observe that, for most of

lineso floggingcode
thousandso flineso fcode

) . Intuitively, less
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TABLE 5
Log Density Across Studied Systems, Where LOC is
Referred to as Lines of Code, and LOLC is
Referred as Lines of Logging Code

System LOC LOLC LOLC per every
thousand LOC

ActiveMQ 337,533 8,055 24

(5.15.13)

Hadoop 189,744 2,471 13

Common (2.7.6)

HDFS (2.7.0) 285,071 5,971 21

MapReduce 197,996 3,279 17

(3.1.4)

YARN (3.1.2) 548,043 6,854 13

Hive (2.7.0) 1,180,562 9,918 8

Storm (2.2.0) 274,860 5,620 20

ZooKeeper 78,684 2,518 32

(3.6.0)

Total 3,092,493 44,686 19

Note that we exclude code comments and empty lines.

the studied systems (i.e., ActiveMQ, Hadoop, Hive, Storm
and ZooKeeper), 400 is the segment size that yields the
most effective metrics, while the most effective segment size
is 600 for HDFS and MapReduce, and 800 for Yarn.
Although the optimal segmentation size is different for each
studied system, we observe a trend where smaller segmen-
tation sizes (e.g., around or below 800) yields better localiza-
tion results. Future studies and practitioners may consider
using smaller segmentation sizes (e.g., 800 or below) when
adopting the technique.

Parameters Settings. Throughout our experiment, we
have tuned these parameters to evaluate the effectiveness
of our approach at different thresholds. Our experiment
indicates that, for most of the studied systems, the MAP
and MRR values achieve the best localization results when
o and g are in the range of 0.1 and 0.2, and when the seg-
ment size is between 400 to 800. Although the optimized
parameter setting can vary from system to system, some
system characteristics may be related to the most effective
parameter values. We observe a trend that smaller seg-
mentation sizes (e.g., 800 or below) yield the best localiza-
tion results, especially for smaller systems. For instance,
Zookeeper, which is the smallest among all studied sys-
tems, has the best localization results when the segment
size is 400. In contrast, Hive, which is the largest among all
studied systems, has the best localization results when the
segment size is 1,000. Therefore, future studies and practi-
tioners may consider starting with a smaller segment size
for smaller systems and gradually increase the segment
size to find the optimal value. We also observe that, when
the logging statements are too far from each other (i.e.,
low log density), there may be more noises when we re-
construct the execution path. The o value decides on how
the logged classes are boosted. In general, we observe that
the systems with a higher log density are more sensitive to
the change of « value (i.e., the magnifier parameter given
to the files found in the reported logs). In Fig. 6a, the two
systems with the highest log density, AMQ and Zoo-
Keeper, have a large variation in their effectiveness as the
o value varies and increases. Therefore, we suggest that
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TABLE 6
Effectiveness of Segmentation at Different Segment Sizes, Where Size Column Refers to Segment Size
System Size Precision@1 Precision@5 Precision@10 MAP MRR
ActiveMQ 400 10.5 49 4.1 0.13 0.18
600 8.1 5.3 34 0.12 0.16
800 7.0 4.7 34 0.11 0.15
1000 4.7 44 3.3 0.09 0.12
1200 47 4.7 34 0.09 0.12
Hadoop 400 17.1 9.3 6.1 0.22 0.28
600 16.0 8.4 5.6 0.21 0.26
800 14.0 7.5 5.1 0.20 0.23
1000 13.6 7.1 5.1 0.19 0.22
1200 12.5 6.6 4.7 0.18 0.20
HDFS 400 18.8 9.9 6.7 0.24 0.30
600 214 10.7 6.9 0.26 0.32
800 16.2 10.1 7.1 0.23 0.29
1000 17.5 10.0 6.6 0.23 0.29
1200 17.0 9.3 6.4 0.22 0.28
MapReduce 400 12.0 7.1 52 0.17 0.21
600 12.7 6.9 5.1 0.18 0.21
800 13.3 6.5 43 0.17 0.21
1000 10.8 5.7 3.9 0.16 0.19
1200 13.9 57 3.9 0.16 0.20
YARN 400 14.5 8.1 5.6 0.20 0.25
600 124 8.3 5.8 0.18 0.23
800 14.9 8.4 5.6 0.20 0.25
1000 14.1 8.2 5.5 0.20 0.24
1200 13.3 8.5 5.6 0.19 0.23
Hive 400 11.7 7.1 5.6 0.15 0.20
600 10.2 7.2 5.5 0.14 0.20
800 10.8 7.3 5.4 0.15 0.20
1000 13.8 7.3 5.0 0.14 0.22
1200 12.8 7.1 4.5 0.14 0.21
Storm 400 21.3 10.2 6.9 0.25 0.31
600 19.7 9.2 6.4 0.22 0.29
800 18.0 10.2 6.1 0.22 0.28
1000 21.3 8.5 5.6 0.22 0.29
1200 21.3 8.2 5.2 0.22 0.29
ZooKeeper 400 13.2 5.3 3.9 0.15 0.20
600 79 4.7 29 0.12 0.15
800 53 32 29 0.10 0.12
1000 7.9 4.2 34 0.11 0.15
1200 7.9 3.7 3.2 0.11 0.14

future studies and practitioners may want to start with a
smaller « when the log density of the system is larger. 8,
which serves as a magnifier for PathScore, decides on how
the classes in the path are boosted. A higher $ value attrib-
utes larger weight to the classes that are on the execution
paths. For larger systems that have a low log density, such
as Hive, we observe that the localization accuracy is the
highest when the g value remains small. In Fig. 6b, we
observe that both the MAP and MRR values for Hive fall
drastically as the g value increases. This may be that larger
systems with lower log density value will have longer
execution paths, which leads to a considerable amount of
classes boosted by the g parameter. The localization accu-
racy decreases when too many classes are boosted (i.e.,
more noise). Thus, we suggest that future studies and

practitioners may want to start with a smaller g when the
system has a lower log density. In summary, we recom-
mend future studies to set the initial parameter values
small and increase them slowly (e.g., by 0.1) to find the
optimal parameter values for the system.

7 THREATS TO VAIDILITY

External Validity. Threats to external validity relates to the gen-
eralizability of our findings. To reduce this threat, we conduct
our case study on eight large-scale open source systems that
vary in size and infrastructures (i.e., data warehouse, realtime
computation system, distributed file system). These systems
are actively maintained and widely used. Although all the
systems are Java-based, our approach is not limited to Java
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systems. We present our approach in a generic way that can
easily be adapted to fit other programming languages. For
uncovering the execution paths, another AST parser that fits
the programming language should be used to replace Java-
parser (e.g., ast module [40] for Python, and cppast library [41]
for C++). Apart from execution paths, the mapping of the
user-reported logs to the logging statements should be cus-
tomized to fit the logging practice of the programming lan-
guage. Future research is encouraged to be conducted on
more bug reports from more systems written in different pro-
gramming languages.

Construct Validity. Threats to construct validity refer to
the suitability of the set of evaluation metrics that we use in
this study. To reduce the threat, we use five evaluation met-
rics in our study: Recall@NV, Precision@N, F1@N, MAP, and
MRR. These metrics are commonly used in information
retrieval and have been used to evaluate many prior bug
localization techniques [12], [35], [42], [43]. We did not con-
sider control flow analysis in our approach. In some cases,
considering the control flow may provide more information.
However, one challenge is that logs are relatively sparse in
the code, so the accuracy of finer-grained control flow anal-
ysis will be low. Moreover, in our prior work [15], we inves-
tigated the benefits and challenges of analyzing logs in bug
reports. We found that developers may have made some
code changes (i.e., the version that the user reported the
issue is an older version and the code has changed), and
the logging statements might be removed throughout the
source code evolution (i.e., the user reported logs can no
longer be found in the source code). Therefore, to reduce
some noises caused by code evolution and the sparseness of
logs, we decided to design the approach by generating the
call graph and conduct the analysis at the file level.

8 CONCLUSION

To help developers with debugging, researchers have pro-
posed a series of information retrieval-based bug localiza-
tion (IRBL) approaches. IRBL approaches aim to find the
source code files that have the highest textual similarity
with a given bug report for further investigation. However,
in bug reports, in addition to the textual information
describing the bug, reporters also often attach logs. Logs
illustrate the system execution information when the bug
occurs and can be mapped to the source code to re-construct
the system execution paths. However, such information is
not directly “visible” in bug reports and is not utilized by
prior IRBL approaches. In this paper, we propose Pathidea,
a IRBL approach that leverages logs in bug reports to re-
construct execution paths. Pathidea integrates the execution
paths information to further improve the performance of
bug localization. Our evaluation on eight open source sys-
tems shows that Pathidea can identify buggy files with high
recall values (up to 51.9 and 57.7 percent for Top@5 and
Top@10, respectively). Pathidea outperforms existing
state-of-the-art IRBL approaches and achieves an average
improvement that varies from 8 to 21 and 5 to 21 percent
over BRTracer in terms of MAP and MRR, respectively. In
addition, our results also show that the re-constructed exe-
cution paths can complement existing IRBL approaches by
providing a 10 and 8 percent improvement in terms of MAP
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and MRR, respectively. Finally, we provide recommenda-
tions to practitioners on setting the parameter values in
Pathidea. In short, our study highlights the benefit of
integrating the system execution information, and future
studies may consider leveraging such execution paths infor-
mation when designing IRBL approaches.
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