
How Useful is Code Change Information for Fault Localization
in Continuous Integration?

An Ran Chen∗
Concordia University

Montreal, Quebec, Canada
anr_chen@encs.concordia.ca

Tse-Hsun (Peter) Chen†
Concordia University

Montreal, Quebec, Canada
peterc@encs.concordia.ca

Junjie Chen†
College of Intelligence and

Computing, Tianjin University
Tianjin, China

junjiechen@tju.edu.cn

ABSTRACT
Continuous integration (CI) is the process in which code changes
are automatically integrated, built, and tested in a shared repository.
In CI, developers frequently merge and test code under develop-
ment, which helps isolate faults with finer-grained change infor-
mation. To identify faulty code, prior research has widely studied
and evaluated the performance of spectrum-based fault localiza-
tion (SBFL) techniques. While the continuous nature of CI requires
the code changes to be atomic and presents fine-grained informa-
tion on what part of the system is being changed, traditional SBFL
techniques do not benefit from it. To overcome the limitation, we
propose to integrate the code and coverage change information in
fault localization under CI settings. First, code changes show how
faults are introduced into the system, and provide developers with
better understanding on the root cause. Second, coverage changes
show how the code coverage is impacted when faults are intro-
duced. This change information can help limit the search space
of code coverage, which offers more opportunities for improving
fault localization techniques. Based on the above observations, we
propose three new change-based fault localization techniques, and
compare them with Ochiai, a commonly used SBFL technique. We
evaluate these techniques on 192 real faults from seven software
systems. Our results show that all three change-based techniques
outperform Ochiai on the Defects4J dataset. In particular, the im-
provement varies from 7% to 23% and 17% to 24% for average MAP
and MRR, respectively. Moreover, we find that our change-based
fault localization techniques can be integrated with Ochiai, and
boost its performance by up to 53% and 52% for average MAP and
MRR, respectively.
ACM Reference Format:
An Ran Chen, Tse-Hsun (Peter) Chen, and Junjie Chen. 2022. How Useful
is Code Change Information for Fault Localization in Continuous Integra-
tion?. In 37th IEEE/ACM International Conference on Automated Software
Engineering (ASE ’22), October 10–14, 2022, Rochester, MI, USA. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3551349.3556931

∗This work was done when An Ran Chen was visiting Tianjin University.
†Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’22, October 10–14, 2022, Rochester, MI, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9475-8/22/10. . . $15.00
https://doi.org/10.1145/3551349.3556931

1 INTRODUCTION
Continuous integration (CI) is a software practice by which devel-
opers frequently merge and test code under development. Every
commit in CI consists of a smaller set of code changes that are in-
crementally tested in the system. The continuous practices ensure
the stability of the code base and allow developers to detect test
failures as early as possible. Occasionally, new code changes may
introduce faults that cause the previously passing regression tests
to fail [13].

Prior studies [6, 8, 10, 18, 26, 63] have proposed spectrum-based
fault localization (SBFL) techniques to locate faulty locations at
either statement or method level that may be the cause of test
failures. In most studies, researchers evaluate SBFL techniques in
traditional software development settings, where they only consider
a single snapshot of the system. In contract, in modern software
development, and especially in continuous integration, developers
make continuous and finer-grained changes to the system. Hence,
when a new test failure occurs, such fine-grained information may
provide additional information to locate the fault. The atomic nature
of code changes also limits the unintended consequences in scope.
In that sense, fault isolation can be realized with more accessible
metrics that are less expensive in diagnosis cost.

In this paper, we conduct an empirical study on the effectiveness
of using and integrating change information for fault localization in
CI settings. In particular, we study two types of change information:
code changes and coverage changes. These two types of change
information capture the changes in both the static and dynamic
aspects of a system. We characterize the change information from a
real world fault, and motivate the design insights of leveraging such
information in fault localization. The key idea is to consider code
changes and coverage changes as important debugging knowledge
to improve fault localization, as such change information is readily
available for systems following CI practices.

For further evaluation, we conduct our experiments on seven
open source Java systems, with a total of 193 real world faults. We
first study the overlaps between the change information and the
faulty methods in the code. Our results suggest that, while both
change information covers a reduced search space compared to code
coverage, the percentages of faulty methods in the search space
are 7 and 14 times higher for code changes and coverage changes,
respectively. Then, we propose three change-based fault localization
techniques and compare them with Ochiai, a commonly used SBFL
technique. Our evaluation results show that all three change-based
techniques outperform Ochiai’s performance. For example, in terms
of average MAP and MRR, the improvement varies from 7% to 23%
and 17% to 24% over Ochiai. Finally, we study how the change

https://doi.org/10.1145/3551349.3556931
https://doi.org/10.1145/3551349.3556931
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3551349.3556931&domain=pdf&date_stamp=2023-01-05

ASE ’22, October 10–14, 2022, Rochester, MI, USA An Ran Chen, Tse-Hsun (Peter) Chen, and Junjie Chen

information may be integrated with traditional SBFL techniques to
further improve fault localization. We study different combinations
of proposed change-based techniques and Ochiai. We find that
combining both change information with Ochiai achieves the best
performance, achieving up to 53% and 52% improvement overOchiai
for average MAP and MRR respectively, and locating 41 more faults
at Top-1.

Our extensive evaluation shows that code changes can further
help with effort reduction, and are important to consider in fault
localization. To the best of our knowledge, this is the first study
that integrates the change information available in CI to improve
SBFL techniques. Our findings show that both change information
provide valuable information on fault localization. Future studies
may consider leveraging change information to complement fault
localization techniques.

In summary, our contributions are:

• We created and released a fault localization dataset that
contains 193 real world faults. Our dataset provides detailed
code and coverage change information between the fault-
inducing commit and its prior commit. The dataset may be
used for benchmarking future fault localization techniques
in the CI context.

• We found that both code and coverage changes have a re-
duced search space compared to code coverage (i.e., cover
fewermethods). However, the coveredmethods have a higher
faulty rate, which implies that change information may be
used to improve the ranking of existing SBFL techniques.

• We proposed three change-based fault localization tech-
niques, which all outperform Ochiai by a considerable mar-
gin (up to 23%, 23%, and 24% improvements over Top-1, MAP,
and MRR).

• We found that by combining traditional SBFL technique (i.e.,
Ochiai) with change-based techniques, we can achieve an
even larger improvement.

In summary, our study sheds light on the importance of change
information. Future studies should consider leveraging such change
information when designing fault localization techniques in CI set-
tings. To ease the replication of our study, we made the replication
package publicly available online [5].
Paper Organization. In Section 2, we present the motivation for
leveraging code change coverage changes and related work. In
Section 3, we present our experimental setup which includes the
studied systems, fault dataset and our data collection process. In
Section 4, we present our results and findings for each research
question. In Section 5, we further elaborate on the results, and
discuss the overheads. In Section 6, we discuss the threats to validity.
In Section 7, we conclude this work.

2 MOTIVATION AND RELATEDWORK
In this section, we first present the motivation for leveraging code
and coverage changes to help improve fault localization in CI. Then,
we discuss related work.

2.1 Motivation
Continuous integration is a software development practice bywhich
developers regularly deliver into a central repository. CI has been
widely established in modern software systems [21, 24, 41, 48]. With
continuous delivery, developers automatically build and test new
code changes incrementally. This practice helps to identify faults
early in the development cycle, making them less expensive to fix.

Prior studies [7, 9, 16, 17, 32, 58, 60] focused on studying the
use of code coverage in locating faults under traditional software
development settings. However, under CI settings, the changes are
incremental. Those finer-grained change information may provide
helpful hints on the faulty locations. Typically, there are two types
of change information: code changes, which track the modified
code statements in a commit; and coverage changes, which record
the changes in code coverage before and after the commit.

As pointed out by prior studies [14, 54, 55], changes to the sys-
tem may help reveal hints on the faults. In this paper, we examine
the two aforementioned change information and study whether
they can provide additional information compared to code coverage,
which is widely used in traditional spectrum-based fault localiza-
tion (SBFL) techniques. We examine code and coverage change
information in the CI context where changes are continuous and
finer-grained. We consider these two types of change information
since they are less expensive to obtain and may be readily available
for systems following CI practices. Studying such change informa-
tion may open new directions to improve fault localization. Below,
we discuss the two types of changes in detail.
Coverage Changes. Coverage changes are the effect of the code
changes from the coverage aspect. Coverage changes include two
types of changed statements: statically and dynamically changed
statements. While both types lead to changes in coverage execu-
tion, they are different in how the statements are changed. For the
statically changed statements, changes happen because the original
statements are modified based on the code changes. For instance,
when developers modify a statement that is part of the code cov-
erage, the coverage execution naturally changes from the original
statement to the recently updated statement. For the dynamically
changed statements, changes happen because the dynamic execu-
tion (e.g., control flow) in the system is different. The coverage
changes as a result of the system taking an alternative execution
path. Together, statically and dynamically changed statements pro-
vide different in-depth information on the changes performed on
the system.

There are two benefits to leveraging such change information.
First, the coverage changes can help characterize the source code
from a new perspective — the perspective of the statements stat-
ically and dynamically influenced by the code changes. This per-
spective may gain new insights into existing problems, such as tie
issue in fault localization. Tie issue is a well-investigated problem
in traditional spectrum-based fault localization techniques [6, 8, 10,
18, 26, 63], which is caused by the exceeding number of statements
within the code coverage. The coverage changes may help prior-
itize faulty locations within the coverage based on the statically
and dynamically changed statements. Another advantage of using
the coverage changes is that it helps limit the search space (i.e.,

How Useful is Code Change Information for Fault Localization in Continuous Integration? ASE ’22, October 10–14, 2022, Rochester, MI, USA

// Commit: 3ba9ba7

// Partial.java

189: Partial(DateTimeFieldType [] types , int[] values , Chronology

chronology){

212: DurationField lastUnitField = null;

217: int compare = lastUnitField.compareTo(loopUnitField);

218: if (compare < 0 || (compare != 0 && ..)) {

219: throw new IllegalArgumentException (..);

...

426: public Partial with(DateTimeFieldType fieldType , int value) {

463: - Partial newPartial = new Partial(iChronology, newTypes, newValues);

463: + // use public constructor to ensure full validation

464: + Partial newPartial = new Partial(newTypes, newValues, iChronology);

465: iChronology.validate(newPartial , newValues);

466: return newPartial;

474: }

// UnsupportedDurationField.java

226: public int compareTo(DurationField field){

227: return 0;

228: }

s Prior Faulty
Partial.java

189

212 •
217 •
218 •
219 •

426
463 •

464 •
465 • •
466 • •
474
UnsupportedDurationField.java
226
227 •
228

Figure 1: Coverage of the fault-triggering test fromTime-2, where Faulty denotes the fault-inducing commit and Prior denotes
the commit prior to the fault-inducing commit.

coverage change is a subset of code coverage), which offers more
opportunities for improving the precision in fault localization.

Let us illustrate the coverage changes through an example adapted
from fault Time 2 in the Defects4J benchmark. In Figure 1, we show
the source code, and the coverage of the test failing in the fault
inducing commit (denoted as Faulty) and passing in the prior com-
mit (denoted as Prior). First, when updating from the prior commit
to the fault-inducing commit, we observe that the statements are
modified at line 463 and 464. Those modifications change the code
coverage by covering a different Partial constructor, as well as
introducing new coverage based on the statements within that
new constructor. We highlight (in red) those coverage changes in
Figure 1. While the code changes reveal what is being done to
the system, the aforementioned coverage changes show the effect
of the code changes on the system. In this fault, the faulty state-
ments locate at line 218 in the Partial.java file, and at line 227
in the UnsupportedDurationField.java file where the coverage
changes. A prior study [11] suggests there exist correlations be-
tween the statements dynamically affected by code changes and the
faulty locations. This study finds that by inspecting only the dynam-
ically changed statements, developers may reduce the inspection
cost and find faults faster. The above observations motivate us to
study the usefulness of coverage changes in fault localization.
Code Changes. In CI, code changes are one of the mostly used
information by developers. They show the modified methods/code
statements that cause the fault-triggering test to fail. Such change
information is important to developers in practice, as it can provide
developers with better understanding on the root cause of the faults.
For instance, in the example illustrated in Figure 1, the code changes
at line 463 and 464 provide a new perspective on the static change
of the system, orthogonal to the coverage changes. Prior studies [14,
54] analyze the changemetric (e.g., the complexity of the introduced
code hunks), and suggest that code changes can be closely correlated
to the faulty locations. However, the usefulness of code changes
remains unknown in the context of CI and fault localization, where

the changes are continuous and finer-grained. Based on the above
observations, we further investigate how the code changes might
contribute to enhancing existing fault localization techniques in CI.

2.2 Related Work
Debugging on Fault-Inducing Commits. Prior studies [14, 54,
55] show that the most recent commit that introduces the fault (i.e.,
fault-inducing commit) is highly correlated to the faulty locations.
Even though a number of studies [14, 50, 53, 61] tackled this chal-
lenge by leveraging the new code change on the fault-inducing
commit, they only analyze the changes applied to the source code.
Yet, the dynamic changes derived from the code coverage contain
the test execution information, which may further help improve
the performance of fault localization techniques.
Testing Practices in CI. Prior studies identify test failures as one
of the main challenges in CI practices [13, 43]. Beller et al. [13]
investigate the impact of test failure in CI practices, and they find
that test failures are responsible for most of the broken builds in
CI. Shahin et al. [43] perform a systematic review of the challenges
in adopting CI practices. One of the challenges inherent in adopting
CI is the low test quality, which is characterized by frequent test
failures, low test coverage and long running tests. Other existing
studies investigate how test failures affect CI [20, 31]. Labuschagne
et al. [31] evaluate the costs and benefits of testing in CI. They sug-
gest that the prevalence of test failures caused by faults represents
a benefit because it provides a positive return on CI maintenance
cost. Elbaum et al. [20] present techniques for improving regression
testing in CI. They propose algorithms to make CI processes more
cost-effective. Hilton et al. [23] study the impact of code changes on
coverage evolution in CI. They highlight the reasons why coverage
can increase or decrease when code changes. Kochhar et al. [30]
survey practitioners on their expectations of fault localization, and
one of the respondents proposes the integration of fault localiza-
tion in CI. In this study, we leverage the code coverage to compute

ASE ’22, October 10–14, 2022, Rochester, MI, USA An Ran Chen, Tse-Hsun (Peter) Chen, and Junjie Chen

Table 1: An overview of studied systems.

System # Faults KLOC # Test cases

Fastjson 88 183 4,736
Lang 6 22 2,245
Math 22 85 3,602
Closure 41 147 7,927
JacksonCore 12 45 664
Time 5 28 4,130
Chart 18 96 2,205
Total 192 606 25,509

coverage changes, and apply them in fault localization techniques
in CI.

3 EXPERIMENTAL SETUP
In this section, we first present the studied systems and fault dataset.
Then, we discuss the data collection process, and the challenges
that we encountered in test execution.

3.1 Studied Systems and Fault Dataset
Although there are several open source fault datasets such as De-
fects4J [29], none of them includes the code evolution details (e.g.,
the test result and code coverage information prior to the fault).
Therefore, we collect the dataset using five studied systems from
the Defects4J benchmark (version 1.0) and two additional systems
(i.e., Fastjson and Jackson-core). In total, we collected 192 faults
and the corresponding test failures across seven studied systems.

We choose the Defects4J benchmark because it has been widely
used in prior fault localization studies [34, 42, 44, 53, 63]. The bench-
mark contains a clean dataset that allows researchers to reproduce
the faults easily. For each fault, it provides the faulty commit, the
fix commit, and fault-triggering tests. However, Defects4J is not ap-
plicable for studies in CI context due to the following reasons. First,
the faulty commit identified by Defects4J does not fit the CI setting.
The faulty commit is defined as one of the commits where fault hap-
pens, but not the first commit. However, testing begins as soon as
the commits are submitted into CI, and if some tests fail, developers
will investigate the issue at the failing commit, which differs from
the faulty commit identified by Defects4J. To simulate a CI setting,
we need to conduct the study on the the fault-inducing commit
(i.e., where test failure occurs). Following prior studies [14, 53], we
identify the matching fault-inducing commits by using “git bisect”
to run the fault-triggering tests on previous commits of the system.

Second, the fault-triggering test at the fault-inducing commit
may have different points of failure and reason of failing compared
to the fault-fixing commit provided by Defects4J. As these provided
fault-fixing commits serve as the ground truth for evaluating the
effectiveness of fault localization techniques, they indicate the lo-
cation where developers should change to fix the faults. However,
there might have been code changes between the fault-fixing com-
mit provided by Defects4J and the fault-inducing commit. Therefore,
we need to make sure that the test is failing due to the same reason

on both commits. To address this challenge, we extract the fault-
triggering test from the fault-fixing commit and execute it on the
fault-inducing commits by following a prior study [55]. Specifically,
we first execute the fault-triggering test on the commit prior to
the fault-fixing commit (i.e., where the fault still occurs) to obtain
the point of failure (e.g., assertion statement). We then execute the
same test on the fault-inducing commit and exclude the fault if the
point of failure is different. We use this approach on all the 357
faults from the Defects4J 1.0 benchmark. At the end of this process,
we collect 83 faults from the Defects4J 1.0 benchmark.

To further increase the size of the fault dataset, we added two
additional systems (i.e., Fastjson and Jackson-core, which follow the
CI practices) and increase the fault data in three Defects4J systems
(i.e., Chart, Lang, and Time) that have the least number of faults after
our previous data validation step. Fastjson is a popular open source
Java system used for JSON object conversion (with 24k stars on
GitHub). Fastjson has been used in prior research [19, 45] to study
code evolution in the CI context. Jackson Project is a well-known
Java JSON library, and its fundamental component, Jackson-core, is
frequently used in prior fault localization studies [27, 39].

To collect the fault dataset in these five systems, we automatically
compile and execute the tests for the 1,000 latest commits at the
time when we conduct our case study in May 2021. Our goal is to
find the fault-inducing commit where a fault is first introduced. We
sort the commits by their creation time and find the first occurrence
for each test failure. Because a test failure may continuously occur
in sequential commits until the fault is fixed, we isolate and identify
the first occurrence of the test failure as the fault-inducing commit.
At the end of this process, we collect 109 additional faults (with a
total of 192 faults, as shown in Table 1) and their corresponding
fault-inducing commit.

3.2 Data Collection Process
In the previous subsection, we discuss the dataset that we collected
and used in our study. In this subsection, we provide a detailed
explanation of our data collection process.

3.2.1 Identifying the Commit Prior to Fault-Inducing Commit. To
obtain the code and coverage changes that resulted in test failure,
we need to identify the commit prior to the fault-inducing commit.
Namely, the commit where the fault has not yet been introduced or
triggered by the tests. We identify the prior passing commit using
the Git command “git rev-parse commitˆ” where commit refers
to the fault-inducing commit. In the case where there are multiple
parent commits, the caret annotation (ˆ) helps to locate the first
immediate parent.

3.2.2 Collecting Code Changes. As mentioned in Section 2.1, we
want to analyze the code changes to study the benefits of leveraging
such change information in fault localization. To collect code change
information, we first use the “git diff” command to capture the
change information between the fault-inducing commit and the
prior commit. This change information includes the modified files,
themodified code statements, and their corresponding line numbers.
To perform a more comprehensive analysis, we also trace higher
granularity information (i.e., method in which the modified line
belongs to). We use a static analysis tool (i.e., JavaParser [25]) to

How Useful is Code Change Information for Fault Localization in Continuous Integration? ASE ’22, October 10–14, 2022, Rochester, MI, USA

derive the per-method abstract syntax tree (AST) for each modified
file. Since the generated ASTs contain the starting and ending line
number for each method, we check whether the line number of the
modified statement is within the range of the starting and ending
line numbers of the ASTs to determine its corresponding method.

3.2.3 Collecting Code Coverage. Our goal is to compare the change
information to the conventional code coverage when leveraged in
fault localization. Therefore, we collect the code coverage on the
fault-inducing commit, and also on the prior commit, to identify the
changes in code coverage. To automate this process, we integrate
GZoltar [4] into each studied system as a Maven plug-in. GZoltar is
a Java framework for automatic debugging and coverage generation.
On every test execution, GZoltar instruments the source files to
obtain a coveragematrix. The coveragematrix provides information
on which statements were executed and by which tests. Thus, we
collect the coverage matrix to compute the code coverage for each
test.

3.2.4 Identifying Coverage Changes. In addition to code changes,
we also want to study whether changes in code coverage help
improving fault localization techniques. As our goal is to identify
the code that is likely to be affected by faults, we compute the
changes based on the coverage of the fault-triggering test, between
the fault-inducing commit and the prior commit.

We first represent each covered statement using the code state-
ments (e.g., Reducer r = new Reducer(..)), rather than the con-
ventional location information (e.g., Reducer.java, line 33). When
comparing the code coverage between two different commits, the
location information is not reflective on what is the exact code
statements been covered, which might introduce bias. For instance,
if the code statement at line 33 changes, then there is a coverage
change at line 33, despite the location information remaining the
same (i.e., line 33 is covered) on the fault-inducing commit and
the prior commit. Therefore, we map the code statements to code
coverage and denote the code coverage as Cov = {s1, s2, ..., sn },
where s represents the code statement covered. Then, we compare
the statements covered on the fault-inducing commit (i.e., Covf ail)
with the prior commit where the test passed (i.e., Covpass). We
locate the changes by identifying the newly added and changed
code statements on the Covf ail . We do not consider the deleted
statements, because when we localize faults on the fault-inducing
commit, only the existent statements are helpful for analysis. For
instance, given Covf ail = {s1, s2, s3} and Covpass = {s2, s3, s4},
the change is Covchanдe = {s1}. Once we locate the changes, we
describe them with the location representation.

3.3 Resolving Challenges in Test Execution
Building the systems and running the tests require non-trivial ef-
fort [46, 47]. As neither the fault-inducing commit nor the prior
commit is readily available on Defects4J, we first need to find the
two commits, build and compile the systems, and execute the tests
multiple times. In total, we spent hundreds of hours of manual
effort compiling the code, executing the tests, and collecting code
coverage. To encourage future studies in the area and ease the
replication of our study, we made the replication package publicly
available [5]. It should be noted that while the data collection has

been challenging, gathering the code coverage information requires
lower overheads in practice. In Section 5.2, we further discuss about
the time costs associated with using the change information in fault
localization.

Below, we share how we resolve the challenges that we en-
countered, which may help future studies create benchmarks in CI
settings.
Automatically compiling evolving code. The project structure
may change as the system evolves. As a result, we need to update
the location of the build file in our automation scripts accordingly.
For instance, in the earlier versions of the system Time, the build
file and the source files were placed inside a nested directory rather
than at the root. In order to compile the system on the earlier
versions, we need to manually resolve the issue and update our
automation script to include the new location of the build file.
Fixing test execution issues. Compiling fault-triggering tests on
the fault-inducing commit is not always straightforward. For in-
stance, the JUnit 3 framework is not able to evaluate test annotations
with excepted exception (e.g., @Test(expected = Exception) that
is featured in JUnit 4. Hence, running a fault-triggering test that
is implemented with JUnit 4 syntax on the fault-inducing commit
that still uses JUnit 3 will result in a test compilation error. To
solve this error, we manually refactor the tests to ensure there is
no compilation issue.
Handling JDK compilation. Some studied systems may depend
on specific versions of the Java Development Kit (JDK). To address
this challenge, we manually determine the required JDK version
for each studied system and build an automated script to switch
between versions when needed.
Handling flaky tests. To ensure the reliability of our results, we
need to remove flaky tests from the fault-inducing commit and
the prior passing commit. Flaky tests generate inconsistent code
coverage because of their non-deterministic nature. We run De-
flaker [3, 12], a state-of-the-art flaky tests detection tool, on both
the fault-inducing commit and the prior commit to detect flaky
tests, and exclude them from the suspiciousness score computation.

3.4 Evaluation Metrics
To measure the effectiveness of leveraging fine-grained change
information for fault localization, we consider the following three
evaluation metrics: top ranked N (Top-N), mean average precision
(MAP), and mean reciprocal rank (MRR), as they have been widely
used in fault localization [15, 49, 54, 56, 61, 65]. Below, we discuss
each metric in detail.
Top-N: Given a number N, the Top-N metric defines the number of
faults whose faulty program elements (i.e., methods in our experi-
ment) are ranked in the top n ranking positions. Top-N evaluates
the ability to find relevant methods among the top ranked n meth-
ods. When the suspiciousness score is the same, we randomly break
the tie, and repeat the process three times to calculate the average
result.
MAP: The MAP metric first computes the average precision for
each fault, then calculates the mean of the average precision. We
define the average precision (AP) as the average of precision values

ASE ’22, October 10–14, 2022, Rochester, MI, USA An Ran Chen, Tse-Hsun (Peter) Chen, and Junjie Chen

Table 2: The number of total methods covered by code coverage, code changes and coverage changes, and the number of faulty
methods captured in each information. Total and Faulty denote the number of total and faulty methods. Faulty ratio denotes
faulty method ratio, which is the percentage of faulty methods per the total methods covered.

System Code Coverage Code Changes Coverage Changes

Total Faulty Faulty Ratio Total Faulty Faulty Ratio Total Faulty Faulty Ratio
Fastjson 7,538 135 1.8% 283 88 31.1% 443 82 18.5%
Lang 41 6 14.6% 7 6 85.7% 8 5 62.5%
Math 827 18 2.2% 264 15 5.7% 90 14 15.6%
Closure 22,572 27 0.1% 293 12 4.1% 2,169 12 0.6%
JacksonCore 1,022 40 3.9% 185 31 16.8% 95 31 32.6%
Time 1,872 7 0.4% 41 5 12.2% 90 7 7.8%
Chart 1,611 21 1.3% 541 16 3.0% 68 19 27.9%
Total 35,483 254 0.7% 1,614 173 10.7% 2,963 170 5.7%

at all ranks where relevant methods are found. MAP assesses the
ability in finding all relevant methods.

AP =

∑m
i=1 i/Pos(i)

m
(1)

MRR: The MRR metric calculates the mean of the reciprocal posi-
tion at which the first relevant method is found. MRR assesses the
ability to find the first relevant method.

MRR =
1
K

K∑
i=1

1
ranki

(2)

4 EXPERIMENT RESULTS
In this section, we present our experiment results by answering
three research questions (RQs). For each RQ, we present the moti-
vation, approach, and results and discussion.

RQ1: What Are the Overlaps Between the
Change Information and Faulty Locations
Motivation: Prior research haswidely studied code coverage-based
fault localization techniques (e.g., SBFL) [7, 57, 62, 63, 66]. Despite
their popularity, these techniques suffer from precision issues due to
the broad search space [8, 28, 44, 62]. Intuitively, coverage changes
are subsets of code coverage which implies a smaller search space.
The code changes can also help restrict the search space while
providing new information (e.g., the changed code may not have
corresponding tests to cover it). Hence, in this RQ, we investigate
how the change information overlaps with the faults, and whether
they are helpful in fault localization.
Approach: To understand how the change information contributes
to finding faulty locations, we analyze the number of faulty meth-
ods covered by each type of change information, and code coverage.
We define faulty methods as the methods that were modified by
developers to fix the faults (i.e., faulty locations). For each fault,
we first identify a set of faulty methods from the fault-resolving
commits. Then, we study how many faulty methods have code
changes or coverage changes, and compare them to code coverage.
Furthermore, we use faulty method ratio to study the percentage
of faulty methods among all the covered methods. A higher faulty

method ratio means that the identified search space has more faulty
methods, which may be leveraged to improve the precision of fault
localization techniques.
Results: Although coverage changes cover only 67% of the
faulty methods from the code coverage, its faulty method
ratio is 7 times higher. As shown in Table 2, coverage changes
have overlaps with 170 faulty methods in the reduced search space
(since coverage changes are a subset of code coverage) and code
coverage has overlaps with 254 faulty methods. Although coverage
changes cover fewer faulty methods, the covered methods have
a much higher faulty method ratio (i.e., 7 times higher, 5.7% com-
pared to 0.7% from code coverage) and significantly fewer methods
compared to code coverage (i.e., 2,963 methods v.s. 35,483 meth-
ods). The results show that the coverage changes, as a subset of
the code coverage, cover 12 times fewer total methods than the
code coverage, which may help in the ranking of faulty locations.
Nevertheless, the coverage changes provide as much as 67% of the
faulty methods within the reduced search space. This means that,
when leveraging the coverage changes, we can perform the fault lo-
calization on a much smaller number of methods, while identifying
a good percentage of faulty methods. The above findings suggest
initial evidence for the potentials of leveraging coverage changes
to improve the precision of fault localization.

Code changes cover additional faulty methods over code
coverage, and provide faulty method ratio that is 14 times
higher. In Table 2, code changes overlap with 173 faulty methods
in the reduced search space while code coverage overlaps with
254 faulty methods. Even though code changes cover fewer faulty
methods, its faulty method ratio is 14 times higher (i.e., 10.7%, com-
pared to 0.7% from code coverage). Code changes’ search space is
also smaller, covering 22 times fewer methods compared to code
coverage (i.e., 1,614 methods v.s. 35,483 methods). We also find that
code changes have overlap with 14% additional faulty methods that
code coverage is not able to cover. After some manual investigation,
we find that the reason is these faulty methods do not have a cor-
responding test and code coverage (i.e., not tested in the system).
Hence, these additional faulty methods that code changes have
overlap with may further help coverage-based fault localization
techniques identify more faults.

How Useful is Code Change Information for Fault Localization in Continuous Integration? ASE ’22, October 10–14, 2022, Rochester, MI, USA

In short, we find that both types of change information have
a higher percentage of faulty method ratio within the identified
search space. Moreover, code changes overlap with faulty methods
that code coverage fails to identify. These findings shed lights on
the potentials of incorporating change information to improve
coverage-based fault localization in CI settings.

Both types of change information cover a higher percentage
of faulty methods compared to code coverage in their reduced
search space. Code changes also cover additional faulty meth-
ods that do not have code coverage.

RQ2: How Does Change Information Perform in
Fault Localization?
Motivation: In RQ1, we found that change information achieves a
higher faulty method ratio in the reduced search space. However, it
is yet to explore whether both types of change information can be
used for fault localization. Therefore, in this RQ, we propose three
change-based techniques derived from change information and
evaluate their effectiveness in fault localization techniques under
CI settings.
Approach: Our goal is to systematically study the effectiveness of
each type of change information in fault localization.We adopt three
change-based techniques to characterize the change information
with fault proneness. These change-based techniques are based on
the size of code changes, the size of coverage changes, and the size
of the statements affected by coverage changes. CodeChange, Cover-
ageChange, and CoverageExecution denote these three change-based
techniques respectively, and they each exclusively leverages one of
the aforementioned change-based metrics. We want to investigate
how each change-based technique performs in fault localization.

We conduct our analysis at themethod level. For each method,
we compute its suspiciousness score by computing and aggre-
gating the suspiciousness scores across all the statements within
the method. Prior studies [33, 35, 44, 63, 64] have also demon-
strated that such method level aggregation helps better distinguish
the non-faulty statements from the faulty ones. We compare the
change-based techniques with Ochiai, a commonly used SBFL tech-
nique [22, 32, 64, 66]. We choose Ochiai since it outperforms other
SBFL formulas in terms of fault localization performance [32, 36, 63].
For evaluating the results, we examine the Top-1, Top-5 and Top-10
accuracy, MAP, and MRR values (defined in Section 3.4).

We design CodeChange to rank methods with the most changes
to be more suspicious. Namely, a method is ranked to be more
suspicious if it contains more modified statements. For instance,
we rank the method with the most changed statements at posi-
tion 1, indicating it is the most suspicious method. For methods
without any code changes, the technique considers them as non-
suspicious, and removes them from the ranking to reduce noise. We
design CodeChange this way since we want to study how vanilla
code changes may be used for fault localization, and previous re-
search [38, 40, 59] observe that the size of a change is a good indi-
cator of fault proneness.

We design CoverageChange to rank methods with most coverage
changes as more suspicious. Within a method, each code statement
with coverage change receives a suspiciousness score of 1. Within
a method, we count the number of code statements with coverage
change, and rank the method with the most changed statements
at position 1. Hence, a method is ranked more suspicious if more
changes happen in code coverage. A previous research [11] found
that the size of changes gives good indication on the fault proneness.
Therefore, we apply the same concept to study the effect of cover
changes on fault localization. For the methods that do not have any
coverage change, the technique considers them as non-suspicious,
and removes them from the ranking to reduce noise.

We design CoverageExecution to rank methods with the most
statements affected by the coverage changes to be more suspicious.
Previous studies [37, 52, 58] found that the size of the execution
affected by the faults can provide additional guidance towards the
faulty locations. Intuitively, if there is a coverage change (either
dynamic or static change) at any statement within a method, the
internal state (i.e., dynamic execution) of the subsequent statements
is likely affected. Therefore, we design this technique to boost the
methods that are “likely affected” by the change. We identify the
methods with the most affected statements to be more suspicious.
For instance, if the first occurrence of the coverage changes locates
at line 33 of a given method, then starting from line 33, we count
the number of statements that were executed by the code coverage.
If the number of statements executed (affected) in that method
is higher than other methods, then it is considered as the most
suspicious method. The methods without any coverage change are
considered as non-suspicious, and removed from the ranking to
reduce noise.
Results: On average, CodeChange, CoverageChange and Cov-
erageExecution achieve 13%, 7% and 23% improvement over
Ochiai forMAP, respectively, and 17%, 17% and 24% improve-
ment for MRR, respectively. Table 3 shows the fault localization
results in terms of MAP, MRR, Top-1, Top-5, and Top-10. We ob-
serve that all three techniques derived from change information,
on average, perform better than Ochiai in fault localization. In par-
ticular, CoverageExecution has the best overall Top-5 and Top-10
(i.e., locating 109 and 118 faults), and the highest average MAP and
MRR (i.e., with an average MAP of 0.37 and MRR of 0.52). Coverage-
Execution achieves an improvement of 23% for average MAP and
24% for MRR.

CoverageChange achieves the second best overall performance,
improving the average MAP and MRR by 13% and 17% respectively
(i.e., with an average MAP of 0.37 and MRR of 0.52.). CodeChange
achieves an improvement of 7% and 17% for average MAP and MRR
(i.e., with an average MAP of and MRR of 0.49). The results show
that even simple techniques that rank by the size of code changes
or coverage changes tend to perform well.

All three techniques achieve improvements in the overall Top-N
values. CodeChange locates the most faults at Top-1 (i.e., locating
81 faults at Top-1), followed by CoverageExecution (i.e., locating 80
faults at Top-1), and CoverageChange also achieves improvements
over Ochiai (i.e., locating 77 faults at Top-1). In terms of the Top-5
and Top-10, CoverageExecution achieves the most faults (i.e., locat-
ing 109 at Top-5, and 118 at Top-10), followed by CoverageChange

ASE ’22, October 10–14, 2022, Rochester, MI, USA An Ran Chen, Tse-Hsun (Peter) Chen, and Junjie Chen

Table 3: Effectiveness of Ochiai, CodeChange, Cover-
ageChange andCoverageExecution in terms of Top-1, Top-5,
Top-10, MAP and MRR. For each project, we show the best
MAP and MRR in bold. The last rows of the table show the
sum values for Top-N, and the weighted average for MAP
and MRR across the studied systems. The last row of the ta-
ble shows the sum values for Top-N, and the weighted aver-
age for MAP and MRR.

System Approach Top-N MAP MRR

N=1 N=5 N=10

Fa
st
jso

n Ochiai 31 45 45 0.20 0.36
CodeChange 45 53 55 0.29 (+45%) 0.56 (+56%)
CoverageChange 54 62 65 0.38 (+90%) 0.65 (+81%)
CoverageExecution 46 60 65 0.35 (+75%) 0.61 (+69%)

La
ng

Ochiai 4 4 4 0.69 0.71
CodeChange 4 5 5 0.78 (+13%) 0.90 (+27%)
CoverageChange 4 5 5 0.72 (+4%) 0.90 (+27%)
CoverageExecution 4 5 5 0.72 (+4%) 0.90 (+27%)

M
at
h

Ochiai 9 10 13 0.51 0.51
CodeChange 10 12 12 0.53 (+4%) 0.54 (+6%)
CoverageChange 8 13 13 0.47 (-8%) 0.49 (-4%)
CoverageExecution 8 14 14 0.50 (-2%) 0.52 (+2%)

Cl
os
ur
e Ochiai 4 10 13 0.18 0.16

CodeChange 7 10 11 0.22 (+22%) 0.24 (+20%)
CoverageChange 2 3 5 0.07 (-61%) 0.09 (-55%)
CoverageExecution 2 8 9 0.12 (-33%) 0.13 (-35%)

Ja
ck
so
nC

or
e Ochiai 0 1 1 0.02 0.02

CodeChange 7 7 7 0.21 (+950%) 0.58 (+2800%)
CoverageChange 1 5 6 0.20 (+900%) 0.26 (+1200%)
CoverageExecution 4 5 6 0.19 (+850%) 0.39 (+1850%)

Ti
m
e

Ochiai 3 4 4 0.63 0.50
CodeChange 2 2 4 0.29 (-54%) 0.46 (-8%)
CoverageChange 1 2 2 0.24 (-62%) 0.32 (-36%)
CoverageExecution 2 2 3 0.43 (-32%) 0.43 (-14%)

Ch
ar
t Ochiai 14 16 16 0.80 0.83

CodeChange 6 7 8 0.50 (-38%) 0.54 (-35%)
CoverageChange 7 15 16 0.57 (-29%) 0.62 (-25%)
CoverageExecution 14 15 16 0.76 (-5%) 0.81 (-2%)

Su
m
/A
vg
. Ochiai 65 90 96 0.30 0.42

CodeChange 81 96 102 0.32 (+7%) 0.49 (+17%)
CoverageChange 77 105 112 0.34 (+13%) 0.49 (+17%)
CoverageExecution 80 109 118 0.37 (+23%) 0.52 (+24%)

(i.e., locating 105 at Top-5, and 112 at Top-10), and CodeChange (i.e.,
locating 96 at Top-5, and 102 at Top-10).

In short, the change-based techniques have a better fault lo-
calization performance compared to Ochiai. Even though change
information has a reduced search space, our findings show that
change information may be better at ranking the faulty methods
and reducing possible investigation effort from developers. Future
fault localization studies should consider change information due
to its effectiveness and availability in CI settings.

The three change-based techniques achieve an improvement
that varies from 7% to 23% and 17% to 24% over Ochiai for the
average MAP and MRR, respectively. The results also indicate
that all three change-based techniques outperform Ochiai in
locating faults across all studied Top-N metrics.

RQ3: Can Change Information Complement
Existing Fault Localization Techniques?
Motivation: In RQ2, our findings show that the change-based
techniques achieve better fault localization results compared to the
coverage-based baseline (Ochiai). However, as found in RQ1, code
coverage still covers more faulty methods compared to coverage
and code changes. Therefore, we hypothesize that the two types of
information (i.e., coverage and change information) may comple-
ment coverage-based SBFL techniques when combined together. In
this RQ, we experiment with different combinations of Ochiai and
the three proposed change-based techniques, and then we discuss
their fault localization results.
Approach: To answer this RQ, we study the effectiveness of adding
five different combinations of the change-based techniques toOchiai.
These combinations includes Ochiai + CC, Ochiai + CovC, Ochiai
+ CovE, Ochiai + CovC + CC, and Ochiai + CovE + CC, where we
denote the size of code changes and coverage changes as CC and
CovC respectively, and CovE as the size of the execution affected by
coverage changes. Similar to RQ1 and RQ2, we conduct the fault
localization at the method level by aggregating the suspiciousness
scores of the code statements within a method (by taking the high-
est score). We compare the results of Top-1, Top-5, Top-10, MAP
and MRR. Below, we describe how we combine Ochiai with CC,
CovC and CovE.
Ochiai + CC: We combine the size of code changes with Ochiai by
following a similar equation (Equation 3 below) defined in prior
studies [15, 51, 56] to calculate a boost score for each code statement.

BoostScore(s) =

{
1

rank if s ∈ RankedStatements
0 otherwise

(3)

The intuition is that the methods with more changes are ranked
higher, and thus the corresponding statements receive a higher
boost score. If a method is ranked second, then the boost score
is 0.5 (1/2). If a method is not part of the coverage changes (and
therefore not ranked), then the boost score is 0. We calculate the
suspiciousness score for each code statement by adding the boost
score to the initial suspiciousness score computed by Ochiai. Finally,
we aggregate the suspiciousness score for all code statements within
a method, and calculate method-level ranking.
Ochiai + CovC: We combine the size of coverage changes with
Ochiai by also following Equation 3. The methods with more cov-
erage changes are ranked higher, and thus more likely to be faulty.
We attribute a higher boost score to the code statements within
that method. Similarly, we calculate the suspiciousness score for
each code statement by adding the boost score to the initial suspi-
ciousness score computed by Ochiai.
Ochiai + CovE: We combine the size of the execution affected
by coverage changes with Ochiai by following Equation 3. The
methods with more affected execution are ranked higher, and thus
more likely to be faulty. Similarly, we add the boost score to the
initial suspiciousness score computed by Ochiai to come up with a
final suspiciousness score.

How Useful is Code Change Information for Fault Localization in Continuous Integration? ASE ’22, October 10–14, 2022, Rochester, MI, USA

Ochiai + CovC + CC and Ochiai + CovE + CC: We combine the
change-based techniques from different change information to-
gether to examine the effect of each change metric on the perfor-
mance Ochiai. To combine both change information in Ochiai, for
each code statement, we add the boost scores calculated from each
of technique to the suspiciousness score computed by Ochiai. We
base our recommendation of results on the resulting suspiciousness
score.
Results: Overall,Ochiai + CovE +CC achieves the best perfor-
mance, improving theMAP andMRR values fromOchiai by
53% and 52% respectively. Table 4 compares the performance of
Ochiai with different change information considered. We calcu-
late the evaluation metrics for each combination and compute its
improvement over Ochiai. On average, all techniques outperform
Ochiai. Specifically, adopting both the size of affected statements
and the size of code changes in Ochiai (i.e., Ochiai + CovE + CC)
achieves the best overall MAP and MRR, and the highest Top-N
values. Ochiai + CovE + CC achieves the optimum improvement of
53% and 52% for MAP and MRR over Ochiai (i.e., with an average
MAP of 0.46 and MRR of 0.64). Ochiai + CovC + CC achieves the
second best improvement of 40% and 45% for MAP and MRR (i.e.,
with an average MAP of 0.42 and MRR of 0.61).

Adopting the individual change metric also yields better results
for Ochiai. Specifically, for Ochiai + CC, Ochiai + CovC and Ochiai +
CovE, the improvements forMAP are 32%, 20% and 33%, respectively,
and the improvements for MRR are 38%, 26% and 36%, respectively.
We observe similar results in terms of the Top-N values. Our finding
shows that any type of the studied change information provides
noticeable benefits when combined with Ochiai.

We find that adopting both change information inOchiai achieves
the best performance on average. Either of the two combinations
(i.e., Ochiai + CovC + CC and Ochiai + CovE + CC) provides better
results than adopting individual change information. In particular,
Ochiai + CovC + CC improves the overall MAP and MRR by 20%
and 19% when compared to Ochiai + CovC, and 8% and 7% when
compared to Ochiai + CC. We observe that combining CovEwith CC
produces better results compared to combining CovC with CC. The
results suggest that CovE with CC complement each other better
and can help further improve the fault localization results.

Adopting the size of code changes alone (i.e., Ochiai + CC) can
significantly improve Ochiai. We observe an improvement of 33%
and 38% for average MAP and MRR respectively. Moreover, Ochiai
+ CC achieves 92 faults at Top-1, locating 27 more faults than Ochiai.
This result suggests that, by only investigating the first position, the
developers might locate 48% (i.e., 92 out of 192 faults) of the faults.
The above findings illustrate the effort reduction for developers in
practice, and show the usefulness of code changes metric in fault
localization. Compared to the use of two other change-based tech-
niques (i.e., Ochiai + CovC and Ochiai + CovE), Ochiai + CC achieves
better performance in fault localization. Particularly, in three out of
the seven studied systems (i.e., Math, Closure and Chart), Ochiai +
CC locates more faults at Top-1 than the two other metrics. This is
because, different from the two other change-based techniques that
are both based on the code coverage, the code changes leverage a
different search space. The additional information as discussed in
RQ1 helps to cover more faults.

Table 4: Effectiveness of Ochiaiwhen applied different com-
bination of change information. For each combination, we
evaluate the performance in terms of MAP and MRR. CC
denotes the code change information. CovC denotes the cov-
erage change information. CovE denotes the coverage execu-
tion information. The best performing approach is marked
in bold. The last row of the table shows the sum values for
Top-N, and the weighted average for MAP and MRR.

System Approach Top-N MAP MRR

N=1 N=5 N=10

Fa
st
jso

n

Ochiai 31 45 45 0.20 0.36
Ochiai + CC 46 61 61 0.28 (+40%) 0.58 (+61%)
Ochiai + CovC 48 67 74 0.35 (+75%) 0.63 (+75%)
Ochiai + CovE 46 68 72 0.35 (+75%) 0.62 (+72%)
Ochiai + CovC + CC 54 74 76 0.39 (+95%) 0.70 (+94%)
Ochiai + CovE + CC 55 75 75 0.38 (+90%) 0.69 (+92%)

La
ng

Ochiai 4 4 4 0.69 0.71
Ochiai + CC 4 5 5 0.85 (+23%) 0.90 (+27%)
Ochiai + CovC 4 5 5 0.83 (+20%) 0.90 (+27%)
Ochiai + CovE 4 5 5 0.83 (+20%) 0.90 (+27%)
Ochiai + CovC + CC 4 5 5 0.83 (+20%) 0.90 (+27%)
Ochiai + CovE + CC 4 5 5 0.83 (+20%) 0.90 (+27%)

M
at
h

Ochiai 9 10 13 0.51 0.51
Ochiai + CC 14 15 16 0.71 (+39%) 0.73 (+43%)
Ochiai + CovC 9 13 15 0.53 (+4%) 0.56 (+10%)
Ochiai + CovE 9 13 15 0.53 (+4%) 0.55 (+8%)
Ochiai + CovC + CC 12 15 16 0.65 (+27%) 0.67 (+31%)
Ochiai + CovE + CC 13 15 16 0.68 (+33%) 0.71 (+39%)

Cl
os
ur
e

Ochiai 4 10 13 0.18 0.16
Ochiai + CC 8 12 16 0.27 (+50%) 0.29 (+81%)
Ochiai + CovC 4 10 13 0.17 (-6%) 0.20 (+25%)
Ochiai + CovE 5 11 16 0.22 (+22%) 0.24 (+50%)
Ochiai + CovC + CC 6 11 16 0.24 (+33%) 0.27 (+69%)
Ochiai + CovE + CC 9 13 16 0.30 (+67%) 0.33 (+106%)

Ja
ck
so
nC

or
e Ochiai 0 1 1 0.02 0.02

Ochiai + CC 1 7 7 0.14 (+600%) 0.33 (+1550%)
Ochiai + CovC 1 6 6 0.08 (+300%) 0.22 (+1000%)
Ochiai + CovE 4 6 6 0.10 (+400%) 0.38 (+1800%)
Ochiai + CovC + CC 6 7 7 0.19 (+850%) 0.53 (+2550%)
Ochiai + CovE + CC 6 7 7 0.22 (+1000%) 0.53 (+2550%)

Ti
m
e

Ochiai 3 4 4 0.63 0.50
Ochiai + CC 2 4 4 0.51 (-19%) 0.51 (+2%)
Ochiai + CovC 2 4 4 0.42 (-33%) 0.51 (+2%)
Ochiai + CovE 2 3 4 0.48 (-31%) 0.48 (-4%)
Ochiai + CovC + CC 2 4 4 0.44 (-30%) 0.49 (-2%)
Ochiai + CovE + CC 2 3 4 0.48 (-24%) 0.48 (-4%)

Ch
ar
t

Ochiai 14 16 16 0.80 0.83
Ochiai + CC 17 18 18 0.90 (+13%) 0.96 (+16%)
Ochiai + CovC 8 18 18 0.66 (-18%) 0.71 (-14%)
Ochiai + CovE 16 18 18 0.88 (+10%) 0.93 (+8%)
Ochiai + CovC + CC 9 18 18 0.69 (-14%) 0.74 (-11%)
Ochiai + CovE + CC 17 18 18 0.92 (+14%) 0.96 (+16%)

Su
m
/A
vg
.

Ochiai 65 90 96 0.30 0.42
Ochiai + CC 92 122 127 0.40 (+33%) 0.57 (+38%)
Ochiai + CovC 76 123 135 0.36 (+20%) 0.53 (+26%)
Ochiai + CovE 86 124 136 0.40 (+33%) 0.56 (+36%)
Ochiai + CovC + CC 93 134 142 0.42 (+40%) 0.61 (+45%)
Ochiai + CovE + CC 106 136 141 0.46 (+53%) 0.64 (+52%)

We observe that the system, Time, experiences a decrease in
fault localization performance when leveraging some of the change-
based techniques. For instance, all of the combinations locate one
less fault at Top-1, and up to one less fault at Top-5. After our
investigation, we find that one specific fault, Time 16, contributes
to this result. As the code changes and coverage changes are large

ASE ’22, October 10–14, 2022, Rochester, MI, USA An Ran Chen, Tse-Hsun (Peter) Chen, and Junjie Chen

in size (due to potential refactoring that happens when fixing the
fault), it introduces much noise (i.e., non-faulty statements), making
it more challenging to locate the faulty locations. Nevertheless, in
Ochiai + CovE, Ochiai + CovC + CC and Ochiai + CovE + CC, the
faulty statement is only ranked at a slightly lower position (i.e.,
from position 1 to 4). Note that considering there are only five faults
in Time, this difference is further magnified when looking at the
percentages of difference in MAP and MRR values, but having a
small impact on the overall results. The results still demonstrate the
usefulness of the change information in locating faults, considering
the overall performance improvement. Future studies are needed to
explore different techniques to leveraging change-based techniques
in fault localization.

The change information can complement Ochiai by providing
up to 53% and 52% improvement in MAP and MRR respectively,
and locating 41 more faults at Top-1. Future fault localization
techniques may consider combining both change information
to further improve the performance.

5 DISCUSSION
5.1 Effectiveness of Change Metrics
Although the combination of the changemetrics andOchiai achieves
promising fault localization results, the change metrics do not con-
tribute to locating some of the faults. In this section, we discuss
the reasons and hope the finding can provide insights for future
studies in CI and fault localization.
Conventional statement coverage may not be sufficient for
capturing the behaviour changes in some code statements
(20/32). While common code coverage tools (e.g., JaCoCo, Cober-
tura, and GZoltar) report coverage at various levels such as code
statement or branch (aggregated per method), they do not report
the condition coverage within each code statement. Therefore, cov-
erage change that happens at the condition-level may be missed.
For example, in fault Closure-85, based on the coverage change
analysis, the covered code statements are identical between the
fault inducing commit and the prior passing commit. However,
based on our manual study, the condition coverage changes at line
199. The statement at line 199 was:

if (n.isEmpty() || (n.isBlock() && !n.hasChildren())).
Although both the fault inducing commit and prior passing commit
cover this code statement, the condition coverage is different. In fact,
the prior commit only covers the first condition n.isEmpty()while
the fault inducing commit covers both conditions. This change in
condition coverage is relevant to the root cause of the fault, but has
not been captured because of the absence of condition coverage
information. Note that the above-mentioned condition coverage
refers to per-statement condition coverage, which is different from
the term “condition coverage” used in Cobertura [1] (also called
“branch coverage” in JaCoCo [2]) which shows the percentage of
conditions covered throughout a method.

Our findings show that despite the advantages of leveraging
coverage change information, there is a need for finer-granularity
coverage information. Future studies are encouraged to study the

usefulness of finer-granularity coverage information in fault local-
ization.
Noise introducedwhen combining the changemetrics (12/32).
To better examine the effect of each change metric on the per-
formance, we adopt the design of our approach to combine the
change metrics following prior studies [15, 56]. We find that, in
some faults, such combinations may introduce noises (i.e., prioritiz-
ing non-faulty statements). For instance, on fault Closure 120, we
observe that neither the code changes, nor the coverage changes
contain the faulty statements, thus the approach boosts the non-
faulty statements to a higher position. This causes the rank of the
faulty statements to be further pushed down in the ranking, which
reduces the performance. While faults are affected by noises, the
result demonstrates that the effect on the overall performance is
trivial.

5.2 Overheads of Change-based Techniques
In this subsection, we discuss the overheads for integrating change-
based fault localization techniques into CI.

To evaluate the overheads, we measure the processing time in
seconds for locating a fault. The localization breaks down into four
steps. In particular, step 1 refers to collecting and analyzing code
change. Step 2 refers to collecting code coverage. Step 3 refers to
performing code coverage change analysis. Finally, step 4 refers to
ranking suspicious methods. On average, it takes less than 42 sec-
onds in total to determine the final ranking of suspicious methods.
In practice, this processing time only represents a small overhead
considering a single build can take more than 12 minutes to run in
some projects (i.e., Fastjson). The main source of overheads orig-
inates from the second step to collect code coverage. This step
requires compilations from the fault-inducing commit and the prior
passing commit. Therefore, depending on the size of the system,
it takes 13 to 43 seconds to successfully compile both commits.
Collecting the code coverage of failing tests can take up to 8 to 24
seconds. While this step contributes to significant time cost, the
compilation of the system is a necessary procedure in CI to run
the builds. And thus, in practice, the compiled source code can be
directly used to collect the code coverage when test failures are
identified. This can help to reduce the overheads associated with
the compilation time. Eventually, as part of the continuous prac-
tice, change-based techniques can be automatically triggered when
test failures happen during nightly builds. As some tests might
take longer time to run, this procedure allows the collection of
additional information on the test failures overnight (e.g., list of sus-
picious methods, change information), which can assist developers
in debugging later.

6 THREATS TO VALIDITY
External Validity. One potential threat to external validity is the
generalizability of our results based on the studied systems. To mit-
igate this threat, we conduct our experiments on seven real-world
open source Java systems each with different characteristics and
infrastructures. On top of the five studied systems provided by the
Defects4J benchmark, we carefully select two additional systems
that are actively maintained, widely used, and follow the CI prac-
tices. While we cannot confirm the generalization of our findings

How Useful is Code Change Information for Fault Localization in Continuous Integration? ASE ’22, October 10–14, 2022, Rochester, MI, USA

to fault localization approaches written in other programming lan-
guages, we design our approaches of leveraging the change metrics
as generic as possible. Future study can easily adopt our approaches
to fit other programming languages.
Construct Validity. One potential threat is our design decision of
combining the change information to Ochiai in RQ3. There may
be better ways of combining the change information that further
explore their benefits. We adopt the approaches following existing
studies [15, 51, 56] to provide insights on the effects of combining
the change information together. Such design helps better illus-
trate the improvement over the baseline (i.e., Ochiai), and can be
easily integrated into the CI context. We encourage future studies
to explore other ways of combining the change information, and
release the data online [5] to facilitate replication. In addition, we
did not consider mutation analysis in our approach. While the mu-
tation analysis may provide more information, one challenge is that
mutation is very costly, and thus does not fit the CI scenario. More-
over, in this study, we focus on two change information as they
provide accurate information on the internal execution changes
of the system. However, there are other change information that
may be leveraged in fault localization. Future study is needed to
investigate other change metrics.

7 CONCLUSION
We present finer-grained change information, code and coverage
changes, in this paper, as a new direction to improve fault local-
ization. Compared to the traditional code coverage metric used in
SBFL techniques, change information presents limited search space
and additional information from the version history. Besides, both
change information are less costly to obtain and may be readily
available for systems following CI practices. However, such infor-
mation is not utilized by prior SBFL techniques. In this paper, we
conduct an empirical study on the helpfulness of change informa-
tion to perform fault localization in CI. Our findings show that,
compared to code coverage, change information helps to limit the
search space and covers a larger percentage of faulty method ratio.
Inspired by these findings, we propose and evaluate three change-
based techniques on seven open source systems. Our results show
that adopting the change information achieves an improvement
over Ochiai that varies from 7% to 23% and 17% to 24% for average
MAP and MRR respectively. Moreover, our results also show that
these change-based techniques can complement Ochiai by provid-
ing up to 53% and 52% improvement in MAP and MRR respectively,
and locating 41 more faults at Top-1. In short, our study sheds light
on the usage of change information in fault localization. We encour-
age future studies to consider leveraging such change information
when designing fault localization techniques.

REFERENCES
[1] 2021. Cobertura. https://cobertura.github.io/cobertura/. Last accessed May 5

2021.
[2] 2021. JaCoCo. https://www.eclemma.org/jacoco/. Last accessed May 5 2021.
[3] 2022. Deflaker. https://www.deflaker.org/. Last accessed February 28 2022.
[4] 2022. GZoltar. https://gzoltar.com/. Last accessed February 28 2022.
[5] 2022. Leveraging-Change-Information repository. https://github.com/

anonymized-datascientist/Leveraging-Change-Information. Last accessedMarch
7 2022.

[6] Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund. 2009. Spectrum-
Based Multiple Fault Localization. In Proceedings of the IEEE/ACM International

Conference on Automated Software Engineering (ASE ’09). 88–99.
[7] Rui Abreu, Peter Zoeteweij, Rob Golsteijn, and Arjan JC Van Gemund. 2009. A

practical evaluation of spectrum-based fault localization. Journal of Systems and
Software 82, 11 (2009), 1780–1792.

[8] Rui Abreu, Peter Zoeteweij, Rob Golsteijn, and Arjan J. C. van Gemund. 2009. A
Practical Evaluation of Spectrum-based Fault Localization. Journal of Systems
and Software 82, 11 (Nov. 2009), 1780–1792.

[9] Rui Abreu, Peter Zoeteweij, and Arjan JC Van Gemund. 2007. On the accuracy of
spectrum-based fault localization. In Testing: Academic and industrial conference
practice and research techniques-MUTATION (TAICPART-MUTATION 2007). IEEE,
89–98.

[10] Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund. 2007. On the Accuracy
of Spectrum-based Fault Localization. In Proceedings of the Testing: Academic and
Industrial Conference Practice and Research Techniques - MUTATION (TAICPART-
MUTATION ’07). 89–98.

[11] Elton Alves, Milos Gligoric, Vilas Jagannath, and Marcelo d’Amorim. 2011. Fault-
localization using dynamic slicing and change impact analysis. In 2011 26th
IEEE/ACM International Conference on Automated Software Engineering (ASE
2011). IEEE, 520–523.

[12] Jonathan Bell, Owolabi Legunsen, Michael Hilton, Lamyaa Eloussi, Tifany Yung,
and Darko Marinov. 2018. DeFlaker: Automatically detecting flaky tests. In 2018
IEEE/ACM 40th International Conference on Software Engineering (ICSE). IEEE,
433–444.

[13] Moritz Beller, Georgios Gousios, and Andy Zaidman. 2017. Oops, my tests broke
the build: An explorative analysis of travis ci with github. In 2017 IEEE/ACM 14th
International Conference on Mining Software Repositories (MSR). IEEE, 356–367.

[14] Marcel Böhme and Abhik Roychoudhury. 2014. Corebench: Studying complexity
of regression errors. In Proceedings of the 2014 international symposium on software
testing and analysis. 105–115.

[15] An Ran Chen, Tse-Hsun Peter Chen, and Shaowei Wang. 2021. Pathidea: Improv-
ing information retrieval-based bug localization by re-constructing execution
paths using logs. IEEE Transactions on Software Engineering (2021).

[16] Junjie Chen, Jiaqi Han, Peiyi Sun, Lingming Zhang, Dan Hao, and Lu Zhang.
2019. Compiler bug isolation via effective witness test program generation. In
Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 223–234.

[17] Junjie Chen, Haoyang Ma, and Lingming Zhang. 2020. Enhanced compiler bug
isolation via memoized search. In Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering. 78–89.

[18] Arpit Christi, Matthew Lyle Olson, Mohammad Amin Alipour, and Alex Groce.
2018. Reduce before you localize: Delta-debugging and spectrum-based fault local-
ization. In 2018 IEEE International Symposium on Software Reliability Engineering
Workshops (ISSREW). IEEE, 184–191.

[19] Jackson Antonio do Prado Lima and Silvia Regina Vergilio. 2020. A multi-armed
bandit approach for test case prioritization in continuous integration environ-
ments. IEEE Transactions on Software Engineering (2020).

[20] Sebastian Elbaum, Gregg Rothermel, and John Penix. 2014. Techniques for im-
proving regression testing in continuous integration development environments.
In Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering. 235–245.

[21] Dror G Feitelson, Eitan Frachtenberg, and Kent L Beck. 2013. Development and
deployment at facebook. IEEE Internet Computing 17, 4 (2013), 8–17.

[22] Luca Gazzola, Daniela Micucci, and Leonardo Mariani. 2017. Automatic software
repair: A survey. IEEE Transactions on Software Engineering 45, 1 (2017), 34–67.

[23] Michael Hilton, Jonathan Bell, and Darko Marinov. 2018. A large-scale study
of test coverage evolution. In Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering. 53–63.

[24] Michael Hilton, Timothy Tunnell, Kai Huang, Darko Marinov, and Danny Dig.
2016. Usage, Costs, and Benefits of Continuous Integration in Open-source
Projects. In Proceedings of the 31st IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE 2016). 426–437.

[25] JavaParser. 2019. https://javaparser.org/. Last accessed July 1 2020.
[26] Jiajun Jiang, Ran Wang, Yingfei Xiong, Xiangping Chen, and Lu Zhang. 2019.

Combining spectrum-based fault localization and statistical debugging: An empir-
ical study. In 2019 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 502–514.

[27] Yanjie Jiang, Hui Liu, Nan Niu, Lu Zhang, and Yamin Hu. 2021. Extracting concise
bug-fixing patches from human-written patches in version control systems. In
2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE).
IEEE, 686–698.

[28] James A Jones, Mary Jean Harrold, and John Stasko. 2002. Visualization of test
information to assist fault localization. In Proceedings of the 24th International
Conference on Software Engineering. ICSE 2002. IEEE, 467–477.

[29] René Just, Darioush Jalali, and Michael D Ernst. 2014. Defects4J: A database of ex-
isting faults to enable controlled testing studies for Java programs. In Proceedings
of the 2014 International Symposium on Software Testing and Analysis. 437–440.

https://cobertura.github.io/cobertura/
https://www.eclemma.org/jacoco/
https://www.deflaker.org/
https://gzoltar.com/
https://github.com/anonymized-datascientist/Leveraging-Change-Information
https://github.com/anonymized-datascientist/Leveraging-Change-Information
https://javaparser.org/

ASE ’22, October 10–14, 2022, Rochester, MI, USA An Ran Chen, Tse-Hsun (Peter) Chen, and Junjie Chen

[30] Pavneet Singh Kochhar, Xin Xia, David Lo, and Shanping Li. 2016. Practitioners’
expectations on automated fault localization. In Proceedings of the 25th Interna-
tional Symposium on Software Testing and Analysis. 165–176.

[31] Adriaan Labuschagne, Laura Inozemtseva, and Reid Holmes. 2017. Measuring the
cost of regression testing in practice: A study of Java projects using continuous
integration. In Proceedings of the 2017 11th JointMeeting on Foundations of Software
Engineering. 821–830.

[32] Tien-Duy B Le, Ferdian Thung, and David Lo. 2013. Theory and practice, do they
match? a case with spectrum-based fault localization. In 2013 IEEE International
Conference on Software Maintenance. IEEE, 380–383.

[33] Xia Li, Wei Li, Yuqun Zhang, and Lingming Zhang. 2019. Deepfl: Integrating
multiple fault diagnosis dimensions for deep fault localization. In Proceedings of
the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis.
169–180.

[34] Yi Li, Shaohua Wang, and Tien N Nguyen. 2021. Fault localization with code
coverage representation learning. In 2021 IEEE/ACM 43rd International Conference
on Software Engineering (ICSE). IEEE, 661–673.

[35] Yiling Lou, Ali Ghanbari, Xia Li, Lingming Zhang, Haotian Zhang, Dan Hao,
and Lu Zhang. 2020. Can automated program repair refine fault localization? a
unified debugging approach. In Proceedings of the 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis. 75–87.

[36] Lucia Lucia, David Lo, Lingxiao Jiang, Ferdian Thung, and Aditya Budi. 2014.
Extended comprehensive study of association measures for fault localization.
Journal of software: Evolution and Process 26, 2 (2014), 172–219.

[37] Wes Masri. 2010. Fault localization based on information flow coverage. Software
Testing, Verification and Reliability 20, 2 (2010), 121–147.

[38] Raimund Moser, Witold Pedrycz, and Giancarlo Succi. 2008. A comparative
analysis of the efficiency of change metrics and static code attributes for de-
fect prediction. In Proceedings of the 30th international conference on Software
engineering. 181–190.

[39] Manish Motwani and Yuriy Brun. 2020. Automatically repairing programs using
both tests and bug reports. arXiv preprint arXiv:2011.08340 (2020).

[40] Nachiappan Nagappan and Thomas Ball. 2005. Use of relative code churn mea-
sures to predict system defect density. In Proceedings of the 27th international
conference on Software engineering (St. Louis, MO, USA) (ICSE ’05). ACM, New
York, NY, USA, 284–292.

[41] Steve Neely and Steve Stolt. 2013. Continuous delivery? easy! just change every-
thing (well, maybe it is not that easy). In 2013 Agile Conference. IEEE, 121–128.

[42] Spencer Pearson, José Campos, René Just, Gordon Fraser, Rui Abreu, Michael D
Ernst, Deric Pang, and Benjamin Keller. 2017. Evaluating and improving fault
localization. In 2017 IEEE/ACM 39th International Conference on Software Engi-
neering (ICSE). IEEE, 609–620.

[43] Mojtaba Shahin, Muhammad Ali Babar, and Liming Zhu. 2017. Continuous
integration, delivery and deployment: a systematic review on approaches, tools,
challenges and practices. IEEE Access 5 (2017), 3909–3943.

[44] Jeongju Sohn and Shin Yoo. 2017. Fluccs: Using code and change metrics to
improve fault localization. In Proceedings of the 26th ACM SIGSOFT International
Symposium on Software Testing and Analysis. 273–283.

[45] Xuezhi Song, Yun Lin, Siang Hwee Ng, Ping Yu, Xin Peng, and Jin Song Dong.
2021. Constructing Regression Dataset from Code Evolution History. arXiv
preprint arXiv:2109.12389 (2021).

[46] Matúš Sulír and Jaroslav Porubän. 2016. A quantitative study of java software
buildability. In Proceedings of the 7th International Workshop on Evaluation and
Usability of Programming Languages and Tools. 17–25.

[47] Michele Tufano, Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco
Oliveto, Andrea De Lucia, and Denys Poshyvanyk. 2017. There and back again:
Can you compile that snapshot? Journal of Software: Evolution and Process 29, 4
(2017), e1838.

[48] Bogdan Vasilescu, Yue Yu, Huaimin Wang, Premkumar Devanbu, and Vladimir
Filkov. 2015. Quality and productivity outcomes relating to continuous integra-
tion in GitHub. In Proceedings of the 2015 10th joint meeting on foundations of

software engineering. 805–816.
[49] Shaowei Wang and David Lo. 2014. Version history, similar report, and structure:

Putting them together for improved bug localization. In Proceedings of the 22nd
International Conference on Program Comprehension. 53–63.

[50] Shaowei Wang and David Lo. 2016. AmaLgam+: Composing Rich Information
Sources for Accurate Bug Localization. Journal of Software: Evolution and Process
28, 10 (2016), 921–942.

[51] Shaowei Wang and David Lo. 2016. Amalgam+: Composing rich information
sources for accurate bug localization. Journal of Software: Evolution and Process
28, 10 (2016), 921–942.

[52] XinmingWang, Shing-Chi Cheung, Wing Kwong Chan, and Zhenyu Zhang. 2009.
Taming coincidental correctness: Coverage refinement with context patterns to
improve fault localization. In 2009 IEEE 31st International Conference on Software
Engineering. IEEE, 45–55.

[53] Ming Wen, Junjie Chen, Yongqiang Tian, Rongxin Wu, Dan Hao, Shi Han, and
Shing-Chi Cheung. 2019. Historical spectrum based fault localization. IEEE
Transactions on Software Engineering (2019).

[54] MingWen, RongxinWu, and Shing-Chi Cheung. 2016. Locus: Locating bugs from
software changes. In 2016 31st IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 262–273.

[55] Ming Wen, Rongxin Wu, Yepang Liu, Yongqiang Tian, Xuan Xie, Shing-Chi
Cheung, and Zhendong Su. 2019. Exploring and exploiting the correlations
between bug-inducing and bug-fixing commits. In Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 326–337.

[56] Chu-Pan Wong, Yingfei Xiong, Hongyu Zhang, Dan Hao, Lu Zhang, and Hong
Mei. 2014. Boosting Bug-Report-Oriented Fault Localization with Segmentation
and Stack-Trace Analysis. In Proceedings of the 2014 IEEE International Conference
on Software Maintenance and Evolution (ICSME ’14). 181–190.

[57] W Eric Wong, Vidroha Debroy, and Byoungju Choi. 2010. A family of code
coverage-based heuristics for effective fault localization. Journal of Systems and
Software 83, 2 (2010), 188–208.

[58] W Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. 2016. A
survey on software fault localization. IEEE Transactions on Software Engineering
42, 8 (2016), 707–740.

[59] Rongxin Wu, Ming Wen, Shing-Chi Cheung, and Hongyu Zhang. 2018. Change-
locator: locate crash-inducing changes based on crash reports. Empirical Software
Engineering 23, 5 (2018), 2866–2900.

[60] Xiaoyuan Xie, Tsong Yueh Chen, Fei-Ching Kuo, and Baowen Xu. 2013. A
theoretical analysis of the risk evaluation formulas for spectrum-based fault
localization. ACM Transactions on Software Engineering andMethodology (TOSEM)
22, 4 (2013), 1–40.

[61] Klaus Changsun Youm, June Ahn, Jeongho Kim, and Eunseok Lee. 2015. Bug
localization based on code change histories and bug reports. In 2015 Asia-Pacific
Software Engineering Conference (APSEC). IEEE, 190–197.

[62] Abubakar Zakari, Sai Peck Lee, Rui Abreu, Babiker Hussien Ahmed, and
Rasheed Abubakar Rasheed. 2020. Multiple fault localization of software pro-
grams: A systematic literature review. Information and Software Technology 124
(2020), 106312.

[63] Mengshi Zhang, Xia Li, Lingming Zhang, and Sarfraz Khurshid. 2017. Boosting
spectrum-based fault localization using pagerank. In Proceedings of the 26th ACM
SIGSOFT International Symposium on Software Testing and Analysis. 261–272.

[64] Mengshi Zhang, Yaoxian Li, Xia Li, Lingchao Chen, Yuqun Zhang, Lingming
Zhang, and Sarfraz Khurshid. 2019. An empirical study of boosting spectrum-
based fault localization via pagerank. IEEE Transactions on Software Engineering
47, 6 (2019), 1089–1113.

[65] Jian Zhou, Hongyu Zhang, and David Lo. 2012. Where should the bugs be fixed?
more accurate information retrieval-based bug localization based on bug reports.
In 2012 34th International Conference on Software Engineering (ICSE). IEEE, 14–24.

[66] Daming Zou, Jingjing Liang, Yingfei Xiong, Michael D Ernst, and Lu Zhang. 2019.
An empirical study of fault localization families and their combinations. IEEE
Transactions on Software Engineering 47, 2 (2019), 332–347.

	Abstract
	1 Introduction
	2 Motivation and Related Work
	2.1 Motivation
	2.2 Related Work

	3 Experimental Setup
	3.1 Studied Systems and Fault Dataset
	3.2 Data Collection Process
	3.3 Resolving Challenges in Test Execution
	3.4 Evaluation Metrics

	4 Experiment Results
	5 Discussion
	5.1 Effectiveness of Change Metrics
	5.2 Overheads of Change-based Techniques

	6 Threats to Validity
	7 Conclusion
	References

