Empirical Software Engineering (2021) 26: 8
https://doi.org/10.1007/510664-020-09893-w

®

Check for
updates

Demystifying the challenges and benefits of analyzing
user-reported logs in bug reports

An Ran Chen' © . Tse-Hsun (Peter) Chen' - Shaowei Wang?

Accepted: 27 November 2020 / Published online: 12 January 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021

Abstract

Logs in bug reports provide important debugging information for developers. During the
debugging process, developers need to study the bug report and examine user-provided logs
to understand the system executions that lead to the problem. Intuitively, user-provided logs
illustrate the problems that users encounter and may help developers with the debugging
process. However, some logs may be incomplete or inaccurate, which can cause difficulty
for developers to diagnose the bug, and thus, delay the bug fixing process. In this paper, we
conduct an empirical study on the challenges that developers may encounter when analyz-
ing the user-provided logs and their benefits. In particular, we study both log snippets and
exception stack traces in bug reports. We conduct our study on 10 large-scale open-source
systems with a total of 1,561 bug reports with logs (BRWL) and 7,287 bug reports without
logs (BRNL). Our findings show that: 1) BRWL takes longer time (median ranges from 3 to
91 days) to resolve compared to BRNL (median ranges from 1 to 25 days). We also find that
reporters may not attach accurate or sufficient logs (i.e., developers often ask for additional
logs in the Comments section of a bug report), which extends the bug resolution time. 2)
Logs often provide a good indication of where a bug is located. Most bug reports (73%) have
overlaps between the classes that generate the logs and their corresponding fixed classes.
However, there is still a large number of bug reports where there is no overlap between
the logged and fixed classes. 3) Our manual study finds that there is often missing system
execution information in the logs. Many logs only show the point of failure (e.g., excep-
tion) and do not provide a direct hint on the actual root cause. In fact, through call graph
analysis, we find that 28% of the studied bug reports have the fixed classes reachable from
the logged classes, while they are not visible in the logs attached in bug reports. In addi-
tion, some logging statements are removed in the source code as the system evolves, which
may cause further challenges in analyzing the logs. In short, our findings highlight possible
future research directions to better help practitioners attach or analyze logs in bug reports.

Keywords Bug report - Log - Stack trace - Empirical study

Communicated by: Romain Robbes

> An Ran Chen
anr_chen@encs.concordia.ca

Extended author information available on the last page of the article.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-020-09893-w&domain=pdf
http://orcid.org/0000-0003-3137-7540
mailto: anr_chen@encs.concordia.ca

8 Page2of30 Empir Software Eng (2021) 26: 8

1 Introduction

Software debugging is an important and challenging task in software maintenance. As the
complexity of modern software systems increases, developers need to spend more time on
understanding system execution in order to locate the problem. A prior study (LaToza and
Myers 2010) finds that developers, on average, spend 33% of their time on debugging.
To assist developers with debugging, prior studies (Jin and Orso 2012; Yuan et al. 2010,
2011; Wu et al. 2014; Soltani et al. 2018; Bianchi et al. 2017; Hassani et al. 2018; Li et al.
2020a) propose approaches to analyze crash reports or system logs. However, these prior
approaches often assume that developers have access to the entire system-generated logs or
instrumented system runtime data. In practice, such information may not always be available
due to privacy or technical concerns (Cao et al. 2014; Shang et al. 2013; Satvat and Saxena
2018). For instance, users usually only attach a portion of the logs in their bug reports, since
the size of the entire log file is often several gigabytes or even larger (Chen et al. 2017a;
Shang et al. 2013).

Bug reports provide important information for developers to fix the problems that users
encounter (Bettenburg et al. 2008a; Anvik et al. 2006). Typically, when reporters create a
bug report, they need to provide a title, the severity (e.g., major or minor), the descrip-
tion of the problem, and system-generated logs (e.g., log messages or stack traces) which
illustrate the system execution paths when the problem occurs. In particular, such logs may
contain valuable debugging information for developers (Bettenburg et al. 2008a; Zimmer-
mann et al. 2010; Schroter et al. 2010). Based on the user-provided information, developers
then diagnose the problem and resolve the issue. In general, developers first look at the
description of the bug report and manually examine the attached logs. Then, developers
investigate where the logs were generated in the source code to find out where the bug might
be. Finally, developers manually examine the source code and the corresponding logs, try-
ing to understand how the system was executed when the bug happened and resolve the
bug.

Intuitively, user-provided logs in bug reports illustrate the problems that users encounter
and may help developers with the debugging process (Bettenburg et al. 2008a). However,
some logs may be incomplete or inaccurate, which can cause difficulty for developers to
diagnose the bug, and thus, delay the bug fixing process. In this paper, we study the useful-
ness of logs in bug reports and the challenges that developers may encounter when analyzing
such logs. We conduct our study on 10 open-source systems (i.e., ActiveMQ, Aspect],
Hadoop Common, HDFS, MapReduce, YARN, Hive, PDE, Storm, and Zookeeper), which
are commonly used in prior log-related studies (Chen and Jiang 2017b; Yuan et al. 2014; Li
et al. 2019, 2020a). In particular, we seek to answer the following research questions:

— RQ1) Are bug reports with logs resolved faster than bug reports without logs?
Different from prior studies, our results suggest that bug reports with logs take longer
time to resolve (median ranges from 3 to 91 days) than those without logs (median
ranges from 1 to 25 days). Our further analysis shows that developers often ask for
more logs in the Comments section of a bug report, which extends bug resolution
time.

— RQ2) Are there overlaps between logged classes and fixed classes? We find that
73% (995/1,370) of the bug reports with logs have overlaps between the logged classes
and fixed classes. Although the logged classes can locate up to 51.6% (44% on average)
of the fixed classes, there is still an average of 56% of the fixed classes that have no
overlap with the logged classes.

@ Springer

Empir Software Eng (2021) 26: 8 Page30f30 8

— RQ3) Why do some fixed classes have no overlap with the logged classes? We con-
duct a manual study on the bug reports where there is no overlap between the logged
classes and fixed classes. We find that most logs only record the unexpected behavior
of the system (e.g., exception) but do not show the root cause of a bug nor the execution
that led to the failure. We also find that some logging statements are removed during
code evolution, so the logs can no longer be mapped to the source code.

In summary, our findings show the benefits of user-reported logs in debugging bug
reports and potential challenges. Future studies should assist reporters to attach logs that
can more accurately show the execution that lead to the root cause of a bug. In addition, our
manual study finds that approaches that can help developers recover the system execution
by connecting the logs may be also helpful. To facilitate the reproducibility, we have made
the data available online. !

Paper Organization Section 2 provides an overview on the background. Section 3 explains
our case study setup. Section 4 answers our research questions. Section 5 summarizes the
implications of our findings. Section 6 discusses the threats to validity. Section 7 surveys
related work. Finally, Section 8 concludes this paper.

2 Background

In this section, we give a brief overview of the types of information that is available in a bug
report.

2.1 Bug Reports

Bug reports contain information to help developers diagnose reported bugs. A prior
study (Bettenburg et al. 2008a) points out that from the developers’ perspective, a good bug
report should have a clear description and other important debugging information, such as
logs. On bug tracking systems such as Jira, bug reports typically contain the following fields:
Summary, Status, Details (including Type, Status, Priority, Resolution, Affects Versions,
and Fix Versions), Assignee, Reporter, Description, Attachments, and Comments. Figure 1
shows an example of a bug report from the Hadoop Common system. The Summary section
gives an overview of the bug. The Description section provides an explanation to the bug,
and may contain the logs for debugging hints and some user-specific runtime information
(e.g, describe the specific use case or hardware environment). The Status field provides the
status of the bug report in the workflow. The Resolution field indicates the final resolution
assigned to the reported bug (e.g., FIXED, DUPLICATE, WON’T FIX). The Affects Ver-
sions field is usually provided by the reporter, whereas the Fix Versions field is added by the
assignee after bug fixes. Sometimes, either the reporter or the assignee might attach patches
or tests in the Attachments section. In the Comments section, developers may further dis-
cuss the bug, provide opinions, and potentially ask for additional technical details. To note
that the same idea applies for bug reports on Bugzilla, although they do not contain the Fix
Versions field.

Thttps://github.com/SPEAR- SE/LogInBugReportsEmpirical_Data

@ Springer

https://github.com/SPEAR-SE/LogInBugReportsEmpirical_Data

8 Page4of30 Empir Software Eng (2021) 26: 8

@ Hadoop HDFS / | HDFS-4426 1D Assi
= : ssignee
Secondary namenode shuts down immediately after startup Summary
v Details v People
Type: O Bug Status: | cLose | Arpit Agarwal
Priority © Blocker Resolution Fixed Jason Darrell Lowe
Affects Version/s 2.0.3-alpha, 0.23.6 Fix Version/s: 2.0.3-alpha, 0.236, 0.23.7 Dotai B Vot Tor (s esus
5 etails
Component/s namenode 11 Start watching this issue
Labels None Reponer
v Dates
v Description 22/Jan/13 19:57
After HABOOP-948% went in, the secondary namenode immediately shuts down after it is started. From the 15/Feb/13 13:12
startup logs: Resolved 23/Jan/13 19:12
2013-01-22 19:54:28,826 INFO d y (java:initialize(299)
2013-01-22 19:54:28,826 INFO n: d (Secondar: .java: tialize(301)
2013-01-22 19:54:28,845 INFO namenode.SecondaryNameNode (StringUtils.java:run(616)) - SHUTDOWN,
SHUTDOWN_MSG: Shutting down SecondaryNameNode at xx ; s Dates created,

updated and
I looked into the issue, and it's shutting down because SecondaryNameNode.main starts a bunch of resolved
daemon threads then returns. With nothing but daemon threads remaining, the JVM sees no reason to

keep going and proceeds to shutdown. Apparently we were implicitly relying on the fact that the

HttpServer QueuedThreadPool threads were not daemon threads to keep the secondary namenode Description

process up.

v Attachments

E£] HDFS-4426.1.patch 1«8 23/Jan/13 17:09

E] HDFS-4426.branch-23.patch 18 kB 23/Jan/13 19:14

£) HDFS-4426.patch 09kB 23/Jan/13 04:23 Attachments
v Activity

All Comments WorkLog History Activity Transitions L

v @ suresh Srinivas added a comment - 22/Jan/13 20:50 Comments

Jason, | will followup on this. Thanks for filing the bug.

Fig. 1 An example bug report (HADOOP-4426) on Jira

2.2 Logsin Bug Reports

To assist developers to diagnose and fix bugs, reporters may attach logs in their bug reports.
Typically, there are two types of logs in bug reports: log snippets, which record software
system execution at run time; and exception logs, which record the stack traces when an
exception happens. Figures 2 and 3 show an example of log snippets and exception logs,
respectively. A log snippet is an ordered set of log messages generated by logging state-
ments during runtime. Each log is often composed of the timestamp, verbosity level (e.g.,
debug, info, error, or fatal), class name, and detailed log message. An exception log contains
information on multiple sets of stack frames (i.e., stack trace) when an exception happens.
Exception logs are recorded together with log snippets to provide a more detailed view of
the system execution when an exception happens (Fu et al. 2014). Exception logs often con-
tain the timestamps, thrown exceptions (e.g., NullPointerException), and the fully-qualified
file names, method signatures, and line numbers for the method calls on the stack frames. In
this study, we refer to logged classes as the classes that generate the logs, either log snippets,
exception logs, or both.

2009-02-12 08:35:36,417 INFO org.apache.hadoop.mapred.TaskTracker:
Task attempt_200902120746_0297_r_000033_0 is in COMMIT_PENDING
2009-02-12 08:35:36,417 INFO org.apache.hadoop.mapred.TaskTracker:
attempt_200902120746_0297_r_000033_0 0.33333334% reduce > sort

Fig.2 An example of log snippets. (HADOOP-5233)

@ Springer

Empir Software Eng (2021) 26: 8 Page50f30 8

17/07/14 13:31:58 INFO hdfs.DFSClient: Exception in createBlock
-OutputStream java.io.EOFException:
at org.apache.hadoop.hdfs.protocolPB.PBHelper.vintPrefixed (PB
—Helper.java:2280)
at org.apache.hadoop.hdfs.DFSOutputStream$DataStreamer.create
-BlockOutputStream (DFSOutputStream. java:1318)

Fig. 3 An example of exception logs. (HDFS-8475)

In bug reports, logs may be attached in the Description and Comments sections.
Reporters often open a bug report and report the failing stack traces or log snippets in the
Description to assist developers in bug fixing. Occasionally, developers may discuss the bug
report and request more logs from the reporter in the Comments section. Figure 4 shows
such an example, where the developer first asked for a step-by-step instruction to reproduce
the bug, then demanded server logs.

A number of prior studies aim to debug or reproduce bugs using system execution infor-
mation (Jin and Orso 2012; Yuan et al. 2010, 2011; Wu et al. 2014; Soltani et al. 2018).
However, these prior approaches often assume that developers have access to the entire
system-generated logs or instrumented system runtime data. Such debugging data may not

ZooKeeper /| ZOOKEEPER-2982
Re-try DNS hostname -> IP resolution

v Description
ZOOKEEPER-1566 fixed a DNS resolution issue in 3.4. Some portions of the fix haven't yet been ported to 3.5.

To recap the outstanding problem in 3.5, if a given ZK server is started before all peer addresses are resolvable, that server may cache a negative lookup result and
forever fail to resolve the address. For example, deploying ZK 3.5 to Kubernetes using a StatefulSet plus a Service (headless) may fail because the DNS records are
created lazily.

2018-02-18 09:11:22,583 [myid:0) - WARN [QuorumPeer[myid=0](plain=/0:0:0:0:0:0:0:0:2181) (secure=disabled):Follower€95] - Exception when following
the leader
java.net.UnknownHostException: zk-2.zk.default.svc.cluster.local

at java.net.AbstractPlainSocketImpl.connect (AbstractPlainSocketImpl.java:184)

at java.net Impl.connect (Impl.java:392)

at java.net.Socket.connect(Socket.java:589)

at org.apache. zookeeper . server.quorum. Learner.sockConnect (Learner . java:227)

at org.apache.zookeeper.server.quorum.Learner.connectToLeader (Learner. java:256)

at org.apache.zookeeper.server.quorum.Follower. follovLeader (Follover. java:76)

at org.apache.zookeeper.server.quorum.QuorumPeer . run (QuorumPeer . java: 1133)

In the above example, the address “zk-2.zk.default.svc.cluster.local® was not resolvable when the server started, but became resolvable shortly thereafter. The
server should eventually succeed but doesn't.
v Activity

All Comments WorkLog History Activity Transitions

> @ Eron Wright added a comment - 20/Feb/18 22:47 Flavio Paiva Junqueira that is correct; without the patch, the ensemble never comes online.

v Abraham Fine added a comment - 20/Feb/18 22:65

Eron Wright | think "connectToLeader" uses the address from “findLeader™ which should read the QuorumVerifier" updated by ‘recreateSocketAddresses’
called in “connectOne".

| have a feeling it would be tough, but if you could come up with a test to reproduce the issue you are facing or give us step by step instructions to
reproduce(ideally outside of K8s) that would help us confirm the problem.

~ @ Eron Wright added a comment - 20/Feb/18 23:01

The step-by-step instructions are:

1. configure a three node ensemble (0,1,2).

2. by whatever means, configure 0 such that it cannot resolve the DNS address of 1 and/or 2. Do likewise for other servers.
3. Start the observing the unk ion as shown in the description.

4. While the servers are running, fix the DNS issue so that the addresses may be resolved.

5. Observe that the exception continues to occur.

v Flavio Paiva Junqueira added a comment - 20/Feb/18 23:08

Eron Wright could you upload some server logs so that we can have a look, please?

Fig.4 An example of a bug report (ZOOKEEPER-2982) highlighting the discussions between the reporter
and developer (assignee). The bug report addresses a server problem when resolving for the host address on
Zookeeper clusters. In the Comments section, the developer asked the reporter to provide some server logs
to help the bug fix (higlighted in red)

@ Springer

8 Page6o0of30 Empir Software Eng (2021) 26: 8

always be available to developers. In many cases, developers need to rely on data in bug
reports for debugging, which may be incomplete or inaccurate (Bettenburg et al. 2008a).
Without helpful debugging data, it is difficult for developers to fully understand the bug
and thus, quite often delay the bug fixes (Bettenburg et al. 2008a). Thus, in this paper, we
intend to explore whether user-provided logs provide valuable debugging hints to devel-
opers. Our findings provide an initial insight on leveraging readily-available information
in bug reports to assist developers with debugging, and provide a deeper understanding of
the reasons and potential solutions to the challenges that developers may encounter when
analyzing user-provided logs in bug reports.

3 Data Collection and Case Study Setup

In this section, we first discuss the studied systems. Then, we describe our data collection
process and data characteristics.

3.1 Studied Systems

Table 1 shows an overview of the studied systems. We conduct our case study on 10 Java-
based open source systems: ActiveMQ, Aspect], Hadoop Common, HDFS, MapReduce,
YARN, Hive, PDE, Storm and ZooKeeper. The size of the studied systems ranges from
144K to 1.7M lines of code. These studied systems are widely used in prior log-related
studies and have high-quality logs (Chen and Jiang 2017b; Li et al. 2019; Yuan et al. 2014).
The studied systems also cover different domains, varying from virtual machine deployment
systems to data warehousing solutions. Most of the systems have more than 10 years of code
development. We choose these systems because they are large in scale, actively maintained,
well-documented, and have many bug reports that contain logs (Li et al. 2019; Chen and
Jiang 2017b).

3.2 Collecting and Filtering Bug Reports

We collect all the bug report data that is available on the Jira repository (Apache 2019)
of each studied system from 2008 (or the earliest bug creation date) to January 2019, and
compute the lines of code (LOC) on the master branch (data collected in January 2019).
To collect the bug reports, we built a web crawler that sends REST API calls to the Jira
repositories. We select the bug reports based on the criteria that are used in prior bug report
studies (Chen et al. 2014, 2017b; Yuan et al. 2014). Namely, we select bug reports of the
type “Bug”, whose status are “Closed” or “Resolved”, with the resolution “Fixed” and
priority marked as “Major” or above. Additionally, we only select the bug reports that
have corresponding code changes in the code repository (i.e., having commit messages that
contain the bug report ID), so we can verify that the bugs are indeed fixed. At the end of
this process, we collected a total of 8,848 bug reports.

3.3 Identifying Bug Reports that Contain Logs
In this paper, we consider two types of logs: log snippets and stack traces. We refer log
snippets as the system-generated logs and refer stack traces as the reported messages in

stack frames (i.e., in the case of exception). These two types of logs are often the only
information that is available for debugging production problems (Yuan et al. 2010, 2012a;

@ Springer

Empir Software Eng (2021) 26: 8 Page70f30 8

Table 1 An overview of the studied systems

System LOC Type Code maturity Selected bug
history range

ActiveMQ 480k Messaging server > 10 years 2008-01-01
to 2019-01-19

Aspect] 447k Aspect-oriented > 10 years 2008-01-01
extension to 2019-01-19

Hadoop Common 364K Common utilities > 10 years 2008-01-01
to 2019-01-19

HDFS 560K Distributed storage > 10 years 2008-01-01
to 2019-01-19

MapReduce 291K Distributed processing > 10 years 2008-01-01
system to 2019-01-19

YARN 313K Resource manager > 5 years 2012-07-18
to 2019-01-19

Hive 1.7M Data warehouse > 5 years 2008-10-15
to 2019-01-19

PDE 369k Tools for plug-ins > 10 years 2008-01-01
development to 2019-01-19

Storm 346k Distributed processing > 5 years 2013-12-11
system to 2019-01-19

Zookeeper 144k Configuration service > 10 years 2008-06-10

to 2019-01-19

Total 5.0M - - -

Fu et al. 2014). A log snippet is composed of consecutive log messages generated at
runtime. Log messages often contain a static message (e.g., in Java, in the follow code,
Logger.info("static_{m}essage" + method()), static_message is an example
of a static message), values for dynamic variables, and the log verbosity level (e.g., info,
warning, or error). An example log message is: “2018-08-29 15:37:47.891 Utils [INFO]
Interrupted while waiting for fencing command: cd”, where it shows the timestamp of when
the event happened, the executed class (i.e., Utils), the log level (i.e., INFO), and the log
message (i.e., Interrupted while waiting for fencing command: cd). Note that such log mes-
sages usually contain system execution information and may not always be an indication
of an error (Yuan et al. 2010; Chen et al. 2017a). The second type of logs is the system
generated exception message and stack trace. Stack traces show the stack frame of the sys-
tem when exceptions occur. Typically, reporters attach logs in the bug description or as
comments.

Since the studied systems use specific logging conventions on the structure of the log
snippets (e.g., ordered as timestamps, verbosity level, class name, and message), we use
regular expressions to capture them in the Description and Comments sections of bug
reports (Chen and Jiang 2017b).

Specifically, we look for log snippets by extracting lines that contain timestamps and log-
related keywords (e.g., info, debug, and error). We look for stack traces in a similar fashion

@ Springer

8 Page8of30 Empir Software Eng (2021) 26: 8

by using both keywords (e.g., a line beginning with “at...”) and line formats (e.g., followed
by method invocation, class name, and line number) that are specific to stack traces.

3.4 Collected Bug Reports

In general, we find that there is a non-negligible percentage (an average of 21.5% across
all systems) of bug reports that contain logs (i.e., either log snippets, stack traces, or both).
Table 2 shows the number of bug reports in the studied systems. We call bug reports with
logs as BRWL, and bug reports without logs as BRNL. In total, 1,561 (18%) bug reports
contain logs and 7,287 (82%) bug reports do not contain any logs. We also observe that 6%
to 47% (an average of 21.5%) of the bug reports contain at least one type of logs, which
indicates that logs are often attached by reporters to help describe problems. In addition,
reporters are more likely to include stack traces in a bug report compared to log snip-
pets. Specifically, 10% (161/1,561) of BRWL have only log snippets compared to 66%
(1,029/1,561) of BRWL that have only stack traces. One possible reason is that stack traces
are more straightforward to interpret (e.g., with clear exception messages and stack traces);
whereas the information in the log snippets may vary depending on how reporters attach the
logs and how developers write the logging statements in the source code (Yuan et al. 2010,
2011; Li et al. 2019). However, many bug reports still contain both log snippets and stack
traces, which shows that both types of logs are commonly provided in bug reports to help
debugging.

4 Case Study Results

In this section, we discuss the results of our research questions (RQs). For each RQ, we
present the motivation, our approach and the results.

Table 2 Bug reports in the studied systems

System BR withonly BR withonly BR with Total Total BRNL Total
log snippets stack traces both BRWL BR
ActiveMQ 10 55 27 92 (15%) 502 (85%) 594
Aspect] 0 42 3 45 (24%) 140 (76%) 185
Hadoop Common 23 71 58 152 (21%) 573 (719%) 725
HDFS 29 99 74 202 (17%) 964 (83%) 1,166
MapReduce 27 100 66 193 (34%) 382 (66%) 575
YARN 29 147 96 272 (47%) 304 (53%) 576
Hive 4 109 16 129 (6%) 2,102 (94%) 2,231
PDE 23 342 0 365 (17%) 1,763 (83%) 2,128
Storm 7 44 13 64 (17%) 316 (83%) 380
Zookeeper 9 20 18 47 (16%) 241 (84%) 288
Total 161 1,029 371 1,561 (18%) 7,287 (82%) 8,848

BR represents bug reports; BRNL represents bug reports with no logs and BRWL represents bug reports with
logs (i.e., either contain log snippets, stack traces, or both)

@ Springer

Empir Software Eng (2021) 26: 8 Page90of30 8

4.1 RQ1:Are Bug Reports With Logs Resolved Faster Than Bug Reports Without
Logs?

Motivation Prior studies (Bettenburg et al. 2008a; Zimmermann et al. 2010) found that log
snippets and stack traces are useful debugging information in bug reports. Presumably, and
as found in prior research (Bettenburg et al. 2008a; Zimmermann et al. 2010; Yuan et al.
2012b), bug reports that contain logs may take a shorter amount of time to resolve compared
to bug reports that do not have logs. However, prior research only studies bug reports with
either log snippets or stack traces but did not study the combination of both types of logs. In
addition, as also shown in Section 2, developers may ask for more logs and may thus delay
the bug resolution time. Therefore, in this RQ, we revisit whether bug reports with logs are
resolved faster than bug reports without logs, and if bug reports with logs in the Comments
section take more time to resolve.

Approach We analyze the bug resolution time for the bug reports that we collected in
Section 3. In particular, we study the bug reports that have a corresponding code change
in the code repository. For each analyzed bug report, we calculate the bug resolution time
(in days) by taking the difference between the bug resolution date and bug report creation
date (Chen et al. 2014). We statistically compare the bug resolution time of the bug reports
with logs (BRWL) and the bug reports without logs (BRNL). We use Wilcoxon rank-sum
test to study if there exists a statistically significant difference between the resolution time
of BRWL and BRNL. We select Wilcoxon rank-sum test because it is a non-parametric test
that does not have an assumption on the distribution of the data (Moore et al. 2009). To fur-
ther show the magnitude of the difference, we compute the effect size. We use Cliff’s Delta,
which is also a non-parametric test, as the effect size measurement to quantify the amount
of difference between BRWL and BRNL (Cliff 1993). We assess the magnitude by using
the thresholds provided by Romano et al. (2006):

negligible, if |d| < 0.147

small, if 0.147 < |d| < 0.33)
medium, if0.33 < |d| < 0.474

large, if 0.474 < |d|

effect size

Results In general, BRWL takes more time to resolve compared to BRNL. Table 3 shows
the median resolution time of bug reports with logs (BRWL) and without logs (BRNL). We
find that the median resolution time ranges from 3 to 91 days for BRWL, and ranges from
1 to 25 days for BRNL. Our results show that such differences are statistically significant
in four out of 10 studied systems (ActiveMQ, Hadoop Common, HDFS, and Storm), where
the effects range from small to large. Figure 5 further shows the beanplots that compare
the density of the resolution time distribution between BRWL and BRNL. We limit the Y-
axis to 15 days to better visualize the difference between the resolution time of BRWL and
BRNL (most BRNL are resolved within 15 days). As illustrated in Fig. 5, the distribution
of the resolution time for BRNL generally has a long tail. In other words, most BRNL are
resolved in a very short amount of time (within two to three days), and almost all BRNL are
resolved within 15 days. BRWL, on the other hand, have more uniform distributions in the
studied systems. To better illustrate this finding, Fig. 6 shows the boxplots that compare the
median resolution time between BRWL and BRNL in range of 15 days. BRNL are generally
resolved in a shorter amount of time than that of BRWL.

@ Springer

8 Page 100f30

Empir Software Eng (2021) 26: 8

Table 3 A comparison of the bug resolution time (in days) between the bug reports with logs (BRWL) and

the bug reports without logs (BRNL) across the studied systems

Project BRWL median BRNL median p-values Cliff’s Delta
resolution resolution
ActiveMQ 21.5 1.0 <0.001 0.73 (large)
Aspect] 14.0 25.0 0.89 0.01 (negligible)
Hadoop Common 7.0 1.0 <0.001 0.58 (large)
HDFS 27.5 4.0 <0.05 0.46 (medium)
MapReduce 23.5 1.0 0.19 0.69 (large)
YARN 10.0 2.0 0.47 0.53 (large)
Hive 7.0 3.0 0.56 0.25 (small)
PDE 3.0 6.0 <0.05 0.11 (negligible)
Storm 4.0 3.0 <0.001 0.28 (small)
Zookeeper 91.0 1.0 0.15 0.88 (large)
Average 20.9 4.7 - -

Prior studies (Bettenburg et al. 2008a; Zimmermann et al. 2010) found that log snippets
and stack traces are important debugging information in bug reports. However, even though
such information is useful for debugging, we find that BRWL take more time to resolve
compared to BRNL. Hence, we further investigate the possible factors that may increase
the resolution time for BRWL. We first study where the logs are attached in bug reports. As
discussed in Section 2, developers may request more logs in the Comments section of a bug
report, which may take time for the reporter to provide and delay the bug fixing. Table 4

ActiveMQ AspectJ Hadoop HDFS
w g w g w g w g
PR=N PR=R 0o » 2
> > > >
© © o ©
o a [a] o
S04 £ 04 S04 Lyt
o T © T © T 1 T
BRNL BRWL BRNL BRWL BRNL BRWL BRNL BRWL
MAPREDUCE YARN Hive PDE
w w w 7 w g
PR=N PE=N =N PN
=T = =T =
© © © ©
[a] [a] [a] o
S S w4 S w4
o T © - T © T ©1 T
BRNL BRWL BRNL BRWL BRNL BRWL BRNL BRWL
Storm Zookeeper
w g w g
PR=N w9
> >
© ©
o a
S04 S04
o A o+

T
BRNL BRWL

T
BRNL BRWL

Fig.5 Beanplots to illustrate the densities of resolution time (in days) distribution for BRWL and BRNL in

range of 15 days

@ Springer

Empir Software Eng (2021) 26: 8

Page 110f30 8

ActiveMQ AspectJ Hadoop HDFS
[» |
104 10+ 10- 10-
lm M |
0 === . ol T8 ol =8
BRNL BRWL BRNL BRWL BRNL BRWL BRNL BRWL
MAPREDUCE YARN Hive PDE
L J L J L J
10 - 10 - 10~ 10 r
0- | 0- , 0- | |___
BRNL BRWL BRNL BRWL BRNL BRWL BRNL BRWL
Storm Zookeeper
I]
10 - ° 10 -
" s | |
0- Y o——
BRNL BRWL BRNL BRWL

Fig.6 Boxplots to illustrate the median resolution time (in days) for BRWL and BRNL in range of 15 days

shows the percentage of BRWL with logs only in the Description section (i.e., BRWL-
D) and BRWL with logs in the Comments section (i.e., BRWL-C, both BRWL with logs
only in the Comments and BRWL with logs in both the Description and Comments), along
with their respective median number of log lines and median resolution time. We find that
the BRWL-C covers from 17% to 68% (an average of 43%) of BRWL. In addition, the
median number of log lines in the Comments section is comparable to that of the Descrip-
tion section. For the median resolution time, however, BRWL-C require much more time
to resolve (i.e., medians are 1.1 to 36.8 times slower) compared to that of BRWL-D. The
Wilcoxon rank-sum test shows that the resolution time from BRWL-D is statistically signifi-
cantly different from the BRWL-C (p < 0.001). We use Cliff’s Delta to assess the magnitude
of this difference, which results to a small effect size (i.e., |d| is 0.31). We further examine
the Spearman rank correlation between the number of log lines in the Comments section
and the resolution time. Although the correlation is not strong, we find that there are some
correlations between the bug resolution time and the number of log lines in the Comments
section (0.20 across all studied systems). Our finding shows that it is common for developers
to ask for more logs to diagnose a bug, and having more logs in the Comments section may
increase bug resolution time. In other words, the initial-attached logs may be insufficient
for debugging. Figure 4 illustrates an example of such cases. The bug report ZOOKEEPER-
2982 highlights an Internet Protocol address (IP) resolution bug in the ZooKeeper server.
Although the reporter initially added some stack traces in the bug description illustrating
the root cause, he was later asked by the developer to provide the steps to reproduce the bug
and some server logs to help the bug fix.

Different from other studied systems, our finding shows that, in Eclipse PDE and
Aspect], the bug reports with logs are resolved faster than the ones without. The median

@ Springer

Empir Software Eng (2021) 26: 8

8 Page120f30

€1 :5ae L1 :Sae (%85) 806 €101 LS :Sae 81 :5ae (%) €59 ‘Te10)
ot ST (%TE) S1 911 91 (9%89) T¢ REES (v
14 Ll (9%€8) €S vl LT (BLD 11 USVIN
I 1 (%LL) T8T LT 6 (%€7) €8 add
S 6C (%89) 88 81 (4 (%TE) 1% 9ATH
9 14! (%19) 0%1 €l 81 (%6¥) TeT NIVA
61 LT (%TP) T8 9¢ 81 (%89) 111 donpayydey
&4 €l (%€P) 98 LE (4 (%LS) 911 SAdH
L €l (9%€$) 08 8 4! (%LY) TL uowwo)) doopey
I 9 (%L9) 0¢ 8 9 (%€£) ST 03dsy
9 1T (9%LS) TS 12e 8¢C (%Er) OF ONPADDY

awn owmn
uonn[osax sour| o[Jo uonn[osal soury 3of jo

UBIPIJN # UBIPON a-1MI9 Jo # UBIPOIN # UBIPOIA] D-IMYE JO # 100f01q

(syuawrwo)) pue uondudsa(Y1oq ur s3o[YPIm TG Pue sjuawwio)) ut AJuo s3op YIm TANE O-TAYG 2'1) siuswuo))
ur sSo[ey Jey) TAAT Pue (Q-TMIE) uonduosaq ur ATuo sSof aaey 18yl TAYE U99MIoq QW) UOTN[OSAI URIPAW puUe saul] S0 Jo Joquunu oy Jo uosuedwod v a|qel

pringer

A's

Empir Software Eng (2021) 26: 8 Page 130f30 8

resolution time for BRWL and BRNL are 3 and 6 days for PDE, respectively, and the dif-
ference is statistically significant (p-value < 0.05) with a negligible effect size. The median
resolution time for BRWL and BRNL are 14 and 25 days for Aspect], respectively, and the
difference is not statistically significant (p-value = 0.89). After some investigation, we find
that, compared to other studied systems, Eclipse PDE and Aspect] have the least percent-
age of BRWL-C. As shown in Table 4, BRWL-C take more time to resolve. For PDE and
Aspect], there are only 23% and 33% of the bug reports that have logs in the Comments
section, respectively.

Another factor that associates with the bug resolution time is the complexity of bug
fixes. We further compare the complexity of the bug fixes between BRWL and BRNL. For
each bug report, we compute the number of changed lines of code (i.e., the total number
of additions and deletions). In general, we find that the median number of changed lines of
code is 51 for BRWL and 30 for BRNL. We also calculate the non-parametric Wilcoxon
rank-sum test to compare the number of changed lines between BRWL and BRNL. The
Wilcoxon rank-sum test shows that BRWL is statistically significant different from BRNL
in terms of changed lines (p < 0.001). To assess the magnitude of this difference, we use
Cliff’s Delta. The difference between the number of changed lines of code for BRWL and
BRNL is negligible (i.e., |d| is 0.12). In short, we find that the bug fixes for BRWL are larger
than BRNL, which may be positively correlated with the longer fixing time of BRWL.

We find that BRWL takes more time to resolve (median ranges from 3 to 91
days) compared to BRNL (median ranges from 1 to 25 days). Our further
investigation shows that the initially-attached logs may not be sufficient
for debugging (i.e., developers often ask for more logs in the Comments
section of a bug report), and the bug fixing size of BRWL is, in general,
larger than BRNL (median is 51 vs 30 lines of code).

4.2 RQ2: Are There Overlaps Between Logged Classes and Fixed Classes?

Motivation Logs illustrate important system run-time information. When debugging user-
reported bugs, logs (i.e., either log snippets, stack traces, or both) are usually the only
source of information that is available to developers (Yuan et al. 2010, 2012a; Fu et al.
2014). Developers need to manually analyze the logs to diagnose the problem. Hence, if the
attached logs are unclear or insufficient, debugging can become even more time consum-
ing and challenging (Yuan et al. 2010, 2012b; LaToza and Myers 2010). Even though prior
studies have leveraged logs to assist bug localization (Wang and Lo 2016; Wong et al. 2014;
Moreno et al. 2014), it is still not clear about the direct effects of the logs and their possible
limitations. In this RQ, we study the overlap between the logged classes (i.e., classes that
generated the logs) and the fixed classes (i.e., classes where developers applied bug fixes).
Our findings provide the empirical evidence on the importance and usefulness of providing
additional tools and information to help developers in analyzing user-provided logs in bug
reports.

Approach Our goal is to study if there exist overlaps between the logged classes and the
fixed classes (i.e., whether or not at least one of the fixed classes is the same as the classes
that generated the user-reported logs). Our first step is to extract the logged classes from
bug reports. As mentioned in Section 2, we capture the logs using regular expression.

@ Springer

8 Page 14 0f30 Empir Software Eng (2021) 26: 8

Specifically, we look for log snippets by extracting log lines that contain timestamps (e.g.,
17/07/14 13:31:58), verbosity level (e.g., +INFO+), and fully-qualified class name
(e.g., org.apache.hadoop.mapred. TaskTracker). We highlight stack traces in
a similar fashion by using the +at+ keyword, followed by a fully-qualified class
name, method invocation, and line number. At the end of the first step, we get a list of
fully-qualified class names covered in logs.

The next step is to extract the list of fixed classes for each bug report. We fol-
low prior studies (Sliwerski et al. 2005; Kim et al. 2006) by linking the bug reports
to the associated bug fixing commits using bug IDs. In the studied systems, devel-
opers are required to record the bug IDs in commit messages. Therefore, we use the
git log | grep BUG_ID["\d]command to find the corresponding bug fixing com-
mits of a bug. Once we get these commits, we find the list of fixed Java files and
compute for their fully-qualified class name from the package declaration statement (e.g.,
package org.apache.hadoop.mapred.TaskTracker). Finally, we compared
the fixed classes that overlap with the logged classes. To note that both the logged classes
and fixed classes are collected at outer class-level. To further refine our analysis, we exclude
191 bug reports that did not modify any existing Java classes. We then conduct a manual
study on these bug fixes to examine the reason.

Results Classes covered in user-reported logs provide a good indication of where the bug
may be located. Table 5 shows the overview of the bug reports where the fixed classes have
an overlap with the logged classes. We find that 88% (1,370/1,561) bug reports modified
existing Java classes when fixing bugs. We further study the remaining 191 bug reports that
did not modify any existing Java class later in this RQ. There are 73% (995/1,370) bug
reports that have an overlap between the fixed classes and the logged classes. In other words,
to a large extent, logs provide direct information for developers to diagnose and fix a bug.

Table 5 An overview of the bug reports with fixed classes overlapping with the logged classes

Project # of BR with Avg. # of fixed Avg. # of logged % of fixed classes
fixed classes classes per BR classes per BR located in logs

located in logs

ActiveMQ 25 (58%) 2.3 15.3 41.6%
Aspect] 23 (65%) 2.0 55 33.7%
Hadoop Common 87 (65%) 2.4 6.8 50.0%
HDFS 119 (71%) 2.8 16.1 48.2%
MapReduce 108 (70%) 2.2 8.6 49.7%
YARN 192 (79%) 33 11.2 51.0%
Hive 91 (75%) 29 12.6 51.6%
PDE 291 (81%) 4.5 14.4 24.5%
Storm 30 (55%) 2.0 7.6 38.7%
Zookeeper 29 (63%) 2.2 6.7 46.2%
total: 995 (73%) avg: 2.7 avg: 10.5 avg: 43.5%

The average numbers are computed based on each bug report. The percentage of fixed classes located in logs
is the ratio of the fixed classes in logs to the total fixed classes in bug report (# fixed classes in logs / # total
fixed classes)

@ Springer

Empir Software Eng (2021) 26: 8 Page 150f30 8

In addition, Table 5 shows the number of classes covered in user-reported logs. We find that
the user-reported logs often cover 5.5 to 16.1 unique classes and these logged classes have
an overlap with 24.5% to 51.6% of the fixed classes. Given the fact that, on average, fixing
a bug report requires only modifying 2 to 4.5 classes in the studied systems. Our finding
shows that even without any advanced techniques, the user-reported logs may provide a
good indication of the fixed classes. Furthermore, on some systems, the median resolution
time is drastically reduced for bug reports that have class overlap. Table 6 shows the median
resolution time for bug reports with class overlap and the ones without. For bug reports
with class overlap, the resolution time can be reduced up to 6.3 times. However, as we also
find, not all fixed classes are found in logged classes. Further improvement can be done to
better assist developers. For instance, future research can develop tools to reconstruct the
execution path based on the user-reported logs to assist developers with bug fixing as we
observe cases where the fixed classes are located on the execution path.

Similar to the prior study conducted by Schroter et al. (2010), we further analyze the bug
reports with fixed classes in stack traces (725/995) to study the position of the fixed class in
the stack frames. Figure 7 shows an overview between the position of the fixed class in stack
trace and the cumulative percentage of bug reports. We observe that 40% of the bug reports
have the fixed class located at the first stack frame, 70% have the fixed class located within
the top-5 stack frames, and more than 90% have the fixed class located within the top-15
stack frames. However, when we further analyze the relationship between the position of
the fixed class and the resolution time of the bug report, the Spearman correlation is nearly
zero (0.08). One potential reason is that bug reports are only marked as resolved or fixed
after they have been tested, code-reviewed, and integrated into the production environment.
There are many factors that can influence the resolution time (e.g., time of bug triage and
replication). As the position of the fixed class is only relevant to the debugging process, its
effect becomes less significant to the overall resolution time. Therefore, our finding shows
that there is no clear correlation between the position of the fixed class in the stack frame
and the bug resolution time.

Table 6 A comparison of the median resolution time for the bug reports with fixed classes located in logs
and the ones without

Project # of BR with Median # of BR with no Median
fixed classes resolution time fixed classes resolution time
located in logs (days) located in logs (days)

ActiveMQ 25 (58%) 14 18 (42%) 57

Aspect] 23 (65%) 16 22 (35%) 13

Hadoop Common 87 (65%) 7 47 (35%) 6

HDFS 119 (71%) 18 48 (29%) 26

MapReduce 108 (70%) 11 46 (30%) 26

YARN 192 (79%) 10 52 (21%)

Hive 91 (75%) 7 30 (25%)

PDE 291 (81%) 3 70 (19%)

Storm 30 (55%) 4 25 (45%) 25

Zookeeper 29 (63%) 60 17 37%) 117

total: 995 (73%) avg: 15 total: 375 (27%) avg: 29

@ Springer

8 Page 16 of 30 Empir Software Eng (2021) 26: 8

< < < < =
o ~ ® © =}
L L L L I

Cumulative percentage of bug reports
o
o

0.44

15 10 15 20 40 60
Position of fixed class in stack trace

Fig.7 Cumulative percentage of bug reports for the position of fixed class in stack trace

Table 7 shows examples where there is an overlap between the logged classes and
fixed classes. HADOOP-5233 (i.e., first row in Table 7) reports a bug where the reducer
transits from COMMIT_PENDING to RUNNING state while it should wait for the commit
response. The user-provided logs show the unexpected transition from COMMIT_PENDING
state, generated by the TaskTracer class. The bug fix to HADOOP-5233 adds a conditional
logic to ignore the progress update in the TaskTracker class whenever the state changes
from COMMIT_PENDING to RUNNING. Thus, the logged class TaskTracer overlaps with
the fixed class. Other changes (i.e., the changes that occur in JobInProgress, Task, Task-
InProgress and TaskStatus) make sure that the COMMIT_PENDING task entry is properly
removed from the tracker. HDFS-10512 (i.e., second row in Table 7) describes a bug that
triggers an unexpected NullPointerException in the VolumeScanner class (i.e., a
volume scanner is responsible to scan block data to detect data corruptions) while read-
ing for a volume variable through the DataNode.reportBadBlocks method call. The bug fix
essentially added a conditional operator to verify whether the volume variable is null in
the DataNode class. The changes to FsDatasetImpl and VolumeScanner are to adopt exist-
ing codes to the changes. In addition, a new test case is added to the TestFsDatasetImpl class
to test the DataNode.reportBadBlocks method when the volume is null. The logged classes
overlaps with the fixed classes DataNode and VolumeScanner.

We further manually examine the bug reports in which no existing Java classes were
modified in the bug fix. We manually study a statistically representative random sample of
162 bug reports out of the 191 bug reports (with a confidence level of 95% and a confidence
interval of 3%). We classify these bug reports into four categories: non-Java code changes,
configuration file changes, only added new Java classes, and incorrect commit. Non-Java
code changes (85/162) are bug fixes performed on programming source code files other
than .java. Such source code files are usually system-specific. For example, in HIVE,
a big majority of these bug reports changed test query files (.g) and test query result files
(.q.out). Configuration file changes (65/162) are bug fixes that only modified configuration
files, such as managing dependencies in .xml file for Maven projects. Only added new Java

@ Springer

8

Page 17 of 30

Empir Software Eng (2021) 26: 8

Iooelryse],
SneISYSe],
ssa13orquy

SISEL NSEL

IooeI[yse], sseidoigquiqof

IOYORITYSE], €€°0 07€€00007X7L6C0O
9%L02TZ0600Z 3dwo33®e

r@a9peILYse] pai-dew doopey-ayoede-

bIo® OANI LTI¥'9€:G€:80 ZI-20-600C ONIANAJ LINWOD UT ST 07 €€

0000™X°L62079%L0ZTZ0600C 3dwa33e

ysel :oaxayoeIlysel pai-dew -doopey-syoede biod OJANI

LTY'9€:5€:80 ZT-20-600C "~ £€¢6-dOOdVH

sdefroAQ sasse[d pax1q

Sasse[d

pagso] sSo 1odoy Sng

SOSSB[O PIXIJ pUR SAsse[d Pag3o] ueamioq Surddewr joaxrp jo sojdwexy £ ajqel

pringer

A's

Empir Software Eng (2021) 26: 8

8 Page 180f30

qureu sse[d paynienb-A[ng oyy Jo peajsur swreu sse[do ay) Jurmoys A[uo Aq sojduwrexe asoyy Ajrpduurs om jeyy 9JoN

JOUUBISOWN[OA
apouereq

IOUUBOSOUIN[OA
[dwpesereq
-S,JIS9L,
[dwpaseleqsq
apoNereq

JOUUBISAWN[OA

JpoN®eIReq Tt (Tz9ieae[*ISUUBDSSUWNTOA) UNI ' @ISUULDS-
SWNTOA " 9pouelep I9AISS *SIPY
-doopey-eyoede-bio® e (L%G:eael Isuuengauniop)dooruni @

JI2UUBDS- SWNTOA ' Spouelep IaaIds " sIpy- doopey-syosede bioad e
(€EpF:eae[" I2UUBDSOWNTOA) JOOTd UERDS ' @IDUUEBDS-SWNTOA " dpouelep”

IaAI9S sIpY - doopey - ayosede " b1od

Je (L8z:eael Isuuengsunio)) STpuey ISTPURHITNSIYULDSD

JI2UUEBDS-SWNTOA “Opouelep IaaIas *s3py- doopey: ayosede - biod

Je (8T0T:eael spoNeleq)s3oold pediiodsal’@sp-oNeled’
spouejep- I19a19s " sIpy - doopey-sysede ‘bioe e uoTideoxH-
I9UTO4TINN bueT -eael uorideoxs JoO

osneosq LUT3lTx® (£qe5Ja5099 8H-S€Z8-€I8F-P8RZ-2E€82LA68-5A

‘up/s3P/) ISUUEDSSUNTOA :@ISUURDSIUNTOA " SPOURIEP " I9AISS

CIS0I-SddH

sdefroaQ

SOSSE[O PIXT]

SISSe[d

pes3oT sSo 1odoy Sng

(ponunuoo) /£ 3|qer

pringer

A's

Empir Software Eng (2021) 26: 8 Page 190f30 8

classes (8/162) are bug reports where only new Java classes were added to the studied
system, and no existing Java class was modified. For such bugs, it is impossible for the logs
to be mapped to a new fixed class that is yet to exist in the system. We also find that this
type of bug fixes is uncommon and developers often modify other configuration files to
adopt the newly added Java classes. Finally, incorrect commit (4/162) consists of bug reports
where bug fixes were committed with the incorrect bug ID. In short, our findings show
that it is common for developers to modify files that are written in different programming
languages, and some bugs can actually be fixed by modifying configuration files. Future
studies should consider the polyglot nature of modern software systems and the importance
of configuration files in fixing bugs.

The fixes to 88% (1,370/1,561) of the BRWL included modifications to
existing Java classes. We find that 73% (995/1,370) of the bug reports
have overlaps between the logged classes and fixed classes. Depending on
the quality of the logs, the logged classes can locate up to 51.6% (44%
on average) of the fixed classes. Although the user-provided logs provide
a good indication on the bug fixing locations in some situations, there is
still an average of 56% of the fixed classes that have no overlap with the
logged classes.

4.3 RQ3: Why do some fixed classes have no overlap with the logged classes?

Motivation Unlike bugs that are uncovered during development phases, many user-
reported bugs are difficult to reproduce and often lack test cases (Tucek et al. 2007; Yuan
et al. 2012a, 2014). In such cases,

developers rely on logs during the debugging process (Yuan et al. 2010, 2011, 2012a).
However, as we found in RQ2, even though there is an overlap between logged classes and
fixed classes, there are some bugs where the user-provided logs cannot help identify fixed
classes (27%, 375/1,370) after excluding the bug reports that had no modified Java class
in bug fixes. Therefore, in this RQ, we manually investigate the reasons why certain user-
provided logs fail to find the fixed classes (i.e., cannot help identify any fixed classes). Our
findings may provide insights on helping researchers and practitioners improve the current
logging practice.

Approach We manually study the bug reports in which the logs could not help identify
fixed classes at all. From RQ2, we find that 27% (375/1,370) of bug reports have no overlaps
between the logged classes and fixed classes. Hence, we then manually study 278 out of
375 such bug reports to achieve a confidence level of 95% and a confidence interval of
3% (Moore et al. 2009). The first author of the paper manually studied the bug reports. The
first author examined the bug reports, the attached logs, the bug fixes, source code classes,
and the development history (e.g., prior commits) to understand the reason. The first author
took notes while studying each bug report. At the end of the process, we uncovered a list of
categories for which there was no direct mapping between logged classes and fixed classes.
We then revisited and assigned each bug report to the uncovered categories. The second

@ Springer

8 Page200f30 Empir Software Eng (2021) 26: 8

author of the paper helped verify the assigned categories and any discrepancy (e.g., on which
category the bug report belongs to) is discussed until there is a consensus.

Results In total, we uncovered two categories of reasons for which there was no direct
mapping between the logged classes and fixed classes. Below, we discuss each category in
detail.

Logs that show the failure but not the fault (i.e., the root cause) (266/278) We find that
reporters in most of the 278 studied bug reports attached related logs to the bug, but the
logged classes do not have an overlap with the fixed classes. In all the cases that we manually
studied, the logs are reported to illustrate an unexpected behavior (i.e., the failure IEEE
2020). The majority of the cases (i.e., 202 bug reports) are related to stack traces. As stack
traces are used to provide debugging information at the point of failure, the faulty classes
(i.e., the cause of the bug) do not fall into the stack frames of the stack traces. Figure 8

Apache Storm / STORM-2496
Dependency artifacts should be uploaded to blobstore with
READ permission for all

v Description

When we submit topology via specific user with dependency artifacts, submitter uploads artifacts to
the blobstore with user which runs the submission.

Since uploaded artifacts are uploaded once and shared globally, other user might need to use
uploaded artifact. (This is completely fine for non-secured cluster.) In this case, Supervisor fails to get
artifact and crashes in result.

2017-04-28 04:56:46.594 o.a.s.l.AsyncLocalizer Async Localizer [WARN] Caught Exception
While Downloading (rethrowing)...
org.apache.storm.generated.AuthorizationException: null

at org.apache.storm.localizer.Localizer.downloadBlob(Localizer.java:535) ~
[storm-core-1.1.0.2.6.0.3-8.jar:1.1.0.2.6.0.3-8]

at org.apache.storm.localizer.Localizer.access$000(Localizer.java:65) ~[storm-
core-1.1.0.2.6.0.3-8.jar:1.1.0.2.6.0.3-8]

at org.apache.storm.localizer.Localizer$DownloadBlob.call(Localizer.java:505) ~
[storm-core-1.1.0.2.6.0.3-8.jar:1.1.0.2.6.0.3-8]

at org.apache.storm.localizer.Localizer$DownloadBlob.call(Localizer.java:481) ~
[storm-core-1.1.0.2.6.0.3-8.jar:1.1.0.2.6.0.3-8]

at java.util.concurrent.FutureTask.run(FutureTask.java:266) ~[?:1.8.0_112]
at
java.util.concurrent.ThreadPoolExecutor.runWorker (ThreadPoolExecutor.java:1142)
[i2:1.8 . 001121
at

java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
[?:1.8.0_112]

at java.lang.Thread.run(Thread.java:745) [?:1.8.0_112]
2017-04-28 04:56:46.597 o.a.s.d.s.Slot SLOT 6701 [ERROR] Error when processing event
java.util.concurrent.ExecutionException: AuthorizationException(msg:<user> does not
have READ access to dep-org.apache.curator-curator-framework-jar-2.10.0.jar)

Ak facen 22T mamasan L DuidcimaManl macawi /BuadomaManl $awa-199) _.r2.1 0 A 1191

So we need to upload artifacts with READ permission to all, or at least supervisor should be able to
read them at all.

Fig.8 An example bug report (STORM-2496) that shows the reporter attached logs to illustrate unexpected

behaviors (i.e., failure). The bug fix was applied in a related class (i.e., DependencyUploader), but the class
is not shown in the stack trace

@ Springer

Empir Software Eng (2021) 26: 8 Page210f30 8

shows an example. In STORM-2496, a reporter attached stack traces to show the failure
AuthorizationException when users upload dependency artifacts. In this stack trace, we see
the list of stack frames leading to the exception and the state of the user’s access permission
being null. However, DependencyUploader, the essential class that manages permissions
and where the bug fix was applied, is not shown in the logs. The reporter also did not attach
the logs that happened before the exception, which may show the execution path that led to
the exception and help locate the root cause.

Similar to the prior study by Moreno et al. (2014), we further analyze the shortest path
in the call graph between the fixed classes and classes found in the logs at class level.
Although some user-provided logs cannot help to identify any fixed classes, we want to
investigate how far away the logged classes are from the fixed classes in the system. Thus,
we further analyze the distance between the fixed classes and the logged classes. First, we
select the commit prior to the bug fixing commit as our affected version (i.e., the bug is still
unresolved). Then, we derive the system call graph on the affected version using JavaParser
[1]. JavaParser is a static analysis tool that transforms the sourcecode to Abstract Syntax
Tree (AST) for Java applications. We traverse the method calls in the ASTs to uncover
all the paths in the call graph. Once the paths are generated, we calculate the distance for
the shortest path, if it exists, between the fixed classes and the logged classes by applying
depth-first search.

Table 8 shows the percentage of bug reports and fixed classes located at different dis-
tances. For the 266 bug reports that belong to this category, 61 (23%) bug reports have fixed
classes that are one distance away from the classes shown in the logs, 13 (5%) are two dis-
tance or further, and 192 (72%) bug reports have fixed classes that are unreachable from
the classes in the logs. The result implies that 28% of the studied bug reports have the fixed
classes that are reachable (i.e., one distance away or further in the call graph) to the classes
in logs. Besides, in terms of the number of fixed classes in stack traces, our finding shows
that up to 18% of the fixed classes (15% that are one distance away from the logged classes,
and 3% are two distance or further) can be located in the call graph. The result shows that
even for some of the bug reports which have no overlap between the logged classes and fixed
classes, the execution path re-constructed from the logged classes may be used to suggest
the potential bug fixing locations.

There are a few other reasons where the fixed classes cannot be located using the attached
logs. Figure 9 shows an example of such bug reports. In this example, DataNode throws
1OException when one of the partitions does not have enough remaining disk space. The
logs show the execution of blocks (i.e., in a distributed storage system, blocks are essentially
chunks of files that are stored across DataNodes) when writing to DataNode. The bug occurs
inside the getAvailable method, from the FSDataset class, that incorrectly calculates the
available space. The getAvailable method was executed as part of the execution between
the first log snippet carrying the message of “No space left on device while writing ...”
and the stack trace throwing the IOException. However, the class (i.e., FSDataset) is not

Table 8 Percentage of bug reports and fixed classes located at different distances, where the distance is
calculated as the shortest path between the logs and fixed classes in terms of class invocations

#BR # fixed classes
total dist=1 dist>1 unreachable total dist=1 dist>1 unreachable
266 61 (23%) 13 (5%) 192 (72%) 564 83 (15%) 19 3%) 462 (82%)

When there is no path between the logs and fixed classes, the fixed classes are marked as unreachable

@ Springer

8 Page220f30 Empir Software Eng (2021) 26: 8

@ Hadoop Common / HADOOP-1189
Still seeing some unexpected 'No space left on device' exceptions
v Description

One of the datanodes has one full partition (disk) out of four. Expected behaviour is that datanode should skip
this partition and use only the other three. HABSSP-998 fixed some bugs related to this. It seems to work ok
but some exceptions are still seeping through. In one case there 33 of these out 1200+ blocks written to this
node. Not sure what caused this. | will submit a patch to the prints a more useful message throw the original
exception.

Two unlikely reasons | can think of are 2% reserve space (8GB in this case) is not enough or client some how
still says block size is zero in some cases. Better error message should help here.

If you see small number of these exceptions compared to number of blocks written, for now you don't need
change anything.

v Activity

All Comments WorkLog History Activity Transitions t

v Raghu Angadi added a comment - 02/Apr/07 20:31
Attached patch prints a warning and throws the IOException received.
The new log entry looks like this:

2007-04-02 12:59:15,940 WARN org.apache.hadoop.dfs.DataNode: No space left on device while writing
blk_8638782110649810591 (length: 67108864) to /export/crawlspace/rangadi/tmp/ramfs (Cur available
space : 20554389)

2007-04-02 12:59:15,943 ERROR org.apache.hadoop.dfs.DataNode: DataXCeiver java.io.|OException: No
space left on device

at java.io.FileOutputStream.writeBytes(Native Method)

at java.io.FileOutputStream.write(FileOutputStream.java:260)

at java.io.BufferedOutputStream.flushBuffer (BufferedOutputStream.java:65)

at java.io.BufferedOutputStream.write (BufferedOutputStream.java:109)

at java.io.DataOutputStream.write(DataOutputStream.java:90)

at org.apache.hadoop.dfs.DataNode$DataXceiver.writeBlock (DataNode.java:837)

at org.apache.hadoop.dfs.DataNode$DataXceiver.run(DataNode.java:603)

at java.lang.Thread.run(Thread.java:619)

Fig.9 An example bug report (HADOOP-1189) that highlights the insufficient disk space left in one of the
partitions. The bug fix updated the FSDataset class which is not shown in the logs (but based on our manual
study, the FSDataset class is invoked between the first log and the second log)

recorded in the stack trace since calls to the class have returned before throwing exceptions,
so are no longer available in the stack. Since logs are expensive to maintain and monitor (Li
et al. 2019; Yuan et al. 2011), developers may need to prioritize on logging the essential
code snippets. Hence, some code snippets may be ignored and not logged. As shown in the
previous example, an important code snippet was hidden between two logging statements.
One potential direction for future research is to focus on reconstructing the execution path
among logs and uncover the hidden paths between logs to further assist debugging.

Our finding indicates that reporters often only attach debugging information for the point
of failure (e.g., stack traces). Although such information is helpful, there is a missing link
between the failure and the root cause of the problem in the source code. Reporters may
consider attaching additional logs (e.g., log snippets) that show the execution of the sys-
tem in addition to stack traces. Additional research is required to help reporters provide
missing logs in bug reports that complete the execution information and help developers
with debugging the problem.

@ Springer

Empir Software Eng (2021) 26: 8 Page230f30 8

To better illustrate the cases where the fixed classes are unreachable through the call
graph, the Fig. 10 shows such example. The bug report Eclipse PDE 266964 shows an Ille-
galStateException when modifying the preferred platform. This error is due to the user job
that keeps running while the user switches the target platform. The stack trace shows that
the Worker class continues to process the user job which leads to the IllegalStateException.
The developers discussed in the comments that such use cases should not be allowed. The
fixed classes were TargetPlatformPreferencePage2, TargetEditor and LoadTargetDefinition-
Job. The fix ensured that any existing jobs are cancelled before the target platform switches.
In such cases, the bug fix occurs in a small workflow change of the system, and it is almost
impossible for developers to show such details in logs.

Code evolution (12/278) We find that sometimes the source code that generates the logs no
longer exists. In other words, the logs that the reporters provide are from an older version of
the system. The logging statements or the source code class may have been removed during
evolution. In such cases, developers may have additional challenges in understanding and
fixing the bug. In addition, we find that 28.1% (323/1,151) of the studied bug reports do
not have values for the Affects Version field (i.e., entered by the reporter or developers to
indicate which versions they observed the bug).

Even if the bug reports have Affects Version, only 32.4% (268/828) of the bug reports
have the same Fix Version as the Affects Version. Note that we exclude PDE and Aspect] bug
reports from this analysis since the Fix Version field is not available on Bugzilla. Namely,
developers often debug and perform the fix on a different version of the code and not on
the reported Affects Version. Our finding highlights that version information is essential for
a high-quality bug report. Therefore, reporters are strongly suggested to include version
information of the buggy system when submitting a bug report. Future studies should also

Bug 266964 - [target] IllegalStateException when changing target platform while
reload is in progress

Steffen Pingel 2009-03-03 22:02:49 EST Description
Steps:

1. Change the target platform using Preferences > Target Platform > Set Active
2. Select Apply

3. Change the target platform again using Preferences > Target Platform > Set
Active while the reload job is running

4. Select Apply

The exception below got dumped to the error log.

Exception Stack Trace:
java.lang.IllegalStateException: The bundle belongs to another state:
javax.xml_1.3.4.v200806030440
at
org.eclipse.osgi.internal.resolver.StateImpl.basicAddBundle(StateImpl.java:554)
at
org.eclipse.osgi.internal.resolver.StateImpl.addBundle(StateImpl.java:68)
at
org.eclipse.pde.internal.core.MinimalState.addBundleDescription(MinimalState.java:249)
[sl
at
org.eclipse.core.internal.resources.InternalWorkspaceJob.run(InternalWorkspaceJob.java:38)
at org.eclipse.core.internal.jobs.Worker.run(Worker.java:55)

Chris Aniszczyk 2009-03-03 23:01:39 EST Comment 1

We should not allow this usecase.

Fig. 10 An example bug report (Eclipse PDE Bug 266964) where the fixed classes are unreachable through
the call graph

@ Springer

8 Page240f30 Empir Software Eng (2021) 26: 8

be conducted to help developers analyze such bug reports by taking the past development
history (e.g., prior source code changes) into consideration, since the fixes may need to be
applied to newer versions of the system.

Our manual study finds that some user-provided logs only show the unex-
pected behavior (i.e., failure), but do not show the root cause of a bug nor
the execution that led to the failure. Reporters should consider attaching
additional logs to assist in debugging. In addition, some attached logs are
from prior versions of the systems and can no longer be found in the source
code. Future research is required to utilize prior source code changes as an
important debugging hint for developers when analyzing bug reports.

5 Discussion and Implication of Our Findings

In this section, we summarize our findings and provide some discussion and implications.

More research and supports are needed for logging code evolution In our manual study
in RQ3, we find that some user-provided logs (i.e., either stack traces, log snippets, or
both) can no longer be found in the version that developers are working on. Different from
a prior study (Yuan et al. 2012b), we found that it is not uncommon for logging state-
ments or methods in stack traces to be removed from the source code. If developers are
not familiar with the system, such logging statement changes can cause additional chal-
lenges during debugging. Future studies should consider analyzing software development
history and help developers locate the user-provided logs, for which the corresponding log-
ging statements/methods were deleted or moved. In addition, for reporters, it is essential to
provide the version information of the system when reporting a bug.

Reporters need additional assistance on providing logs in bug reports Although logs
provide important debugging information for developers, reporters may not be able to pro-
vide accurate logs that can illustrate the problem. For example, we find that reporters may
attach incomplete logs or logs that only illustrate the exception. Hence, future studies should
also consider helping reporters provide more accurate logs that can better assist debug-
ging. One potential direction is to study the part of system execution that is not illustrated
in the reported logs to find the missing link between the failure and the root cause of the
problem.

Future studies could consider using execution paths that are re-constructed from
readily-available runtime data to provide additional debugging supports We find that,
even though the quality of user-provided logs may not be perfect, these logs still provide a
good indication of the fixed classes. Our finding highlights a potential direction that may
further assist developers with debugging. For example, future studies may leverage logs to
re-construct the execution paths between each log message or stack frame. For instance, as
shown in Fig. 9, although the fixed class is invoked on the execution path leading to the
bug, but it does not directly appear in the reported stack trace. Therefore, to further assist

@ Springer

Empir Software Eng (2021) 26: 8 Page250f30 8

developers in debugging, additional research is needed to leverage user-provided logs in
re-constructing the execution paths leading to failures.

6 Threats to Validity
In this section, we discuss the threats to validity related to this study.
6.1 External Validity.

Threats to external validity are related to the generalizability of our findings. To increase
the generalizability of our study, we conduct our case study on 10 large-scale open source
systems that vary in size and infrastructures (e.g., data warehouse, real-time computation
system, distributed file system). These systems are actively maintained and widely used.
Although all the systems are Java-based, our approach is not limited to Java systems. We
present our approach in a generic way that can easily be adapted to fit systems in other
programming languages (e.g., by changing the regular expression). To reduce the external
threat to validity, we include systems from different domains, ranging from databases to
software development tools. We found that the results are similar across the studied sys-
tems. However, other system types, such as mobile applications, may use logs differently
(e.g., for in-house debugging Zeng et al. 2019) and our findings may not hold. Future
studies are encouraged to conduct the analysis on systems in more diverse domains to
improve the generalizability of our findings. For RQ3, we mitigate the sampling bias by
ensuring the sample falls into a confidence level of 95% with a confidence interval of +/-
3%. When sampling for our manual data set, we carefully respect the sample size of each
studied system and sampled proportionally according to the number of bug reports per
system.

6.2 Internal Validity.

Threats to internal validity are related to experimenter errors and bias. Our study shows that
the results of direct mapping between logged classes and fixed classes highly depend on the
quality of user-provided logs. Thus, the extracted logs are an internal threat to the validity
of our study. To mitigate this threat, we choose 10 systems that vary in software maturity, to
better observe the difference in log quality of each studied system.

Another threat to internal validity is that we use bug IDs in commit messages to identify
bug fixing commits. Although the developers in the studied systems are required to provide
bug IDs in commit messages as part of the development guideline, there may still be some
mistakes. For example, in our manual study in RQ3, we found a few cases where developers
made a typo when providing bug IDs in the message. Nevertheless, we find such cases to
be rare, and based on our manual study on a statistically representative sample, the heuristic
has a very high precision (99%).

Another threat to internal validity is the way in which we collected the bug reports
with logs. Typically, reporters attach logs in the bug description or as comments. Some-
times, when the logs are too long, reporters may upload them as attachments. Therefore,
bug reports with logs might also include those that have log files in attachments. We fur-
ther investigate this possibility, and find only a small number of the reporters upload logs as
attachment (i.e., in 51 out of 8,849 bug reports, log files were added as attachment), which
limits the impact of this threat.

@ Springer

8 Page 26 0f 30 Empir Software Eng (2021) 26: 8

In our study, we selected bug reports with priority Major or higher because bug reports
with a lower priority may have less of an impact on the overall quality of the system. More-
over, these bug reports are less likely to be fixed. For example, we find that only 14% of the
bug reports with logs marked as “Minor” or less were fixed in Hive, 13% in Hadoop Com-
mon and Storm, and 12% in MapReduce. Therefore, we follow prior studies (Chen et al.
2014, 2017b; Yuan et al. 2014) and focus our analysis on the bug reports with priority Major
or higher.

6.3 Construct Validity.

In this paper, we have two manual studies. One investigates the reasons why some bug
reports had no modification on existing Java files. The other one studies the reasons why
some bug reports have no overlaps between the logged classes and fixed classes. Human bia-
ses may be introduced. To reduce the bias of our analysis, we have a second author to verify
the assigned categories and any discrepancies are discussed until consensus is reached.

7 Related Work

In this section, we discuss related work in three areas: analyzing bug reports for debugging,
debugging and maintaining software systems, and log analysis.

Analyzing Bug Reports for Debugging Prior studies found that bug reports are essential
for debugging (Anvik et al. 2006; Bettenburg et al. 2008a, b). In particular, Bettenburg et al.
(2008a) found that stack traces and steps to reproduce bugs are important for a good quality
bug report. Similar to their findings, we found that logs provide a good indication of where a
bug may be located. However, more often, we found that there is some missing information
in the logs that may prevent developers from using the logs to locate bugs. Due to the rich
information in bug reports, some studies proposed approaches to locate bugs in the source
code by using text information in bug reports (Zhou et al. 2012; Saha et al. 2013; Rahman
and Roy 2018; Lam et al. 2017; Wang and Lo 2016; Liu et al. 2016; Loyola et al. 2018;
Dao et al. 2017; Bhagwan et al. 2018; Sisman and Kak 2012; Chaparro et al. 2017). Wang
and Lo (2016) and Saha et al. (2013) also found that different parts of bug reports (e.g.,
title and description) may provide more information to help locate the bugs in the source
code. Different from prior studies that focus on developing approaches to help locate bugs
by leveraging bug reports, we performed an empirical study to provide insights to improve
bug localization, e.g., leveraging execution paths that are re-constructed from user-provided
logs to provide additional information for identifying bugs.

Debugging and Maintaining Software Systems By Leveraging Logs Logs, including both
system execution logs and stack traces, are commonly used for understanding system exe-
cution (Chen et al. 2016; Zhao et al. 2014), maintaining software (Chen and Jiang 2017b;
Yuan et al. 2012b), testing (Li et al. 2018; Chen et al. 2017a, 2018), and debugging Yuan
et al. (2010, 2011). Prior studies (Chen and Jiang 2017b; Yuan et al. 2012b) found that
developers continuously improve logging code in software systems to assist in diagnosing
production bugs. Li et al. (2020a) found that developers consider various benefits and costs
when adding logging statements. These log messages are often the only information that
is available for diagnosing production bugs Yuan et al. (2010, 2012a). Yuan et al. (2011,
2012a) tried to improve log messages (e.g., record values for important variables) to assist

@ Springer

Empir Software Eng (2021) 26: 8 Page 27 0f30 8

developers in diagnosing production bugs. Yuan et al. (2010) proposed a technique to assist
developers with debugging by leveraging system runtime logs. However, the authors them-
selves manually evaluated their technique on only eight production bugs. Other studies
apply machine learning techniques to identify anomalies in the log messages, which may
be an indication of possible problems (Xu et al. 2009; Chen et al. 2017a; Lin et al. 2016).
Hassani et al. (2018) analyzes bug reports that are related to logs (e.g., log levels or log mes-
sages) and provided a tool to automatically detect log-related issues. Schroter et al. (2010)
compared the resolution time between the bug reports where the fixes are on the stack traces
and the bug reports where the fixes are not on the stack trace. They found that the bug
reports where the fixes are on the stack trace are fixed faster. Li et al. (2019) proposed an
automated static analysis tool to identify duplicated logging statements code smells. Differ-
ent from prior studies, we focus on studying the user-provided logs in bug reports, where
the quality of the logs depends on the reporter (Li et al. 2020b). We found that although
the user-provided logs can help to debug by highlighting the logged classes to some extent,
there are still some challenges. We manually studied and documented the challenges that
we found in user-provided logs and provide future research directions.

The prior study by Moreno et al. (2014) found that 94.8% of the bug report can be fixed
through the logged classes or the classes that are reachable in code structure to the logged
classes. More specially, 64.5% (100/155) of the bug reports have the fixed classes at distance
zero (i.e., where logged classes are overlapping with the fixed classes), 30.3% (47/155) at
distance one or further, and 5% (8/155) are unreachable. This implies that, based on the 55
bug reports with logged classes that are not directly mappable, 15% (8/55) are unreachable
with the other 85% (47/55) are reachable at distance one or further. Our result is different
from that of the prior study. There are a few potential factors that lead to this difference
in the results. Our bug reports are collected from 10 open-systems systems, where 9 out of
10 are different from the prior study. In our research, we focus on studying the bug reports
with logged classes that are not directly mappable, thus we collected a larger sample size
(i.e., 266 bug reports vs 55 bug reports). In addition, we include both log snippets and stack
traces in our study and the prior study only considers stack traces. Nevertheless, our finding
is similar to that of the prior study, which confirms the usefulness of the classes that are
reachable (i.e., in call graph) from the logged classes in bug localization.

8 Conclusion

Logs in bug reports provide important information for developers to diagnose and fix the
reported problems. However, due to privacy or technical constraints, users often do not pro-
vide the entire logs in a bug report. Therefore, the user-reported logs may be incomplete or
inaccurate. In this paper, we conduct an empirical study on the user-provided logs in bug
reports. In particular, we study the usefulness of the logs and potential challenges that devel-
opers may encounter when analyzing such logs. We conduct our case study on 10 large-scale
open-source systems: ActiveMQ, Aspect], Hadoop Common, HDFS, MapReduce, YARN,
Hive, PDE, Storm, and Zookeeper. We find that: 1) bug reports with logs (BRWL) often
take a longer time to resolve compared to bug reports without logs (BRNL). Our further
analysis finds that developers often require additional logs in the Comments section of a bug
report, which delays the bug fixes. In addition, the fixes of BRWL are more complex (i.e.,
modify more lines) than that of BRNL. 2) Most bug reports (73%) have an overlap between
the logged classes that generate the reported logs in bug reports and their corresponding
fixed classes, and the logged classes cover 38.7% to 51.6% of the fixed classes across our

@ Springer

8 Page28o0f30 Empir Software Eng (2021) 26: 8

studied systems. Our results show that even without any advanced techniques, the user-
reported logs may provide a good indication of the fixed classes. However, there is still a
large number of bug reports where there is no overlap between the logged and fixed classes.
3) Our manual study finds that many logs only show the point of failure (e.g., exception)
and not the actual root cause. In addition, some logging statements are removed in the
source code as the system evolves, which may cause challenges in analyzing the logs. In
summary, our empirical findings illustrate the usefulness of logs in bug reports and unveil
the potential challenges. We also highlight future research directions on helping practition-
ers with attaching logs in bug reports and approaches to better analyze logs (e.g., consider
using execution paths that are re-constructed from user-provided logs to provide additional
debugging supports).

References

Anvik J, Hiew L, Murphy GC (2006) Who should fix this bug? In: Proceedings of the 28th international
conference on software engineering, ICSE 06, pp 361-370

Apache (2019) Aapache JIRA. Last accessed: Feb. 1, 2019

Bettenburg N, Just S, Schrter A, Weiss C, Premraj R, Zimmermann T (2008a) What makes a good bug report?
In: Proceedings of the 16th international symposium on foundations of software engineering

Bettenburg N, Premraj R, Zimmermann T, Kim S (2008b) Duplicate bug reports considered harmful... really?
In: Proceedings of the 24th IEEE international conference on software maintenance, ICSM *18

Bhagwan R, Kumar R, Maddila CS, Philip AA (2018) Orca: Differential bug localization in large-scale
services. In: 13th USENIX symposium on operating systems design and implementation (OSDI 18).
USENIX Association, pp 493-509

Bianchi FA, Pezze M, Terragni V (2017) Reproducing concurrency failures from crash stacks. In: Proceed-
ings of the 2017 11th joint meeting on foundations of software engineering, ESEC/FSE 2017, pp 705-
716

Cao Y, Zhang H, Ding S (2014) Symcrash: Selective recording for reproducing crashes. In: Proceedings of
the 29th ACM/IEEE international conference on automated software engineering, ASE *14, pp 791-802

Chaparro O, Florez JM, Marcus A (2017) Using observed behavior to reformulate queries during text
retrieval-based bug localization. In: Proceedings of the 33rd international conference on software
maintenance and evolution, ICSME ’17, pp 376-387

Chen T-H, Nagappan M, Shihab E, Hassan AE (2014) An empirical study of dormant bugs. In: Proceedings
of the 11th working conference on mining software repositories, MSR 2014, pp 82-91

Chen T-H, Shang W, Hassan AE, Nasser M, Flora P (2016) Cacheoptimizer: Helping developers configure
caching frameworks for hibernate-based database-centric web applications. In: Proceedings of the 24th
ACM SIGSOFT international symposium on foundations of software engineering, FSE 2016, pp 666—
677

Chen T-H, Syer MD, Shang W, Jiang ZM, Hassan AE, Nasser M, Flora P (2017a) Analytics-driven load
testing: An industrial experience report on load testing of large-scale systems. In: Proceedings of the 39th
international conference on software engineering: software engineering in practice track, ICSE-SEIP
’17, pp 243-252

Chen B, Jiang ZM (2017b) Characterizing logging practices in java-based open source software projects — a
replication study in apache software foundation. Empir Softw Eng 22(1):330-374

Chen B, Song J, Xu P, Hu X, Jiang ZMJ (2018) An automated approach to estimating code coverage mea-
sures via execution logs. In: Proceedings of the 33rd ACM/IEEE international conference on automated
software engineering, ASE ’18, pp 305-316

Cliff N (1993) Dominance statistics: Ordinal analyses to answer ordinal questions. Psychol Bull 114(3):494—
509

Dao T, Zhang L, Meng N (2017) How does execution information help with information-retrieval based bug
localization? In: Proceedings of the 25th international conference on program comprehension, ICPC *17,
pp 241-250

Fu Q, Zhu J, Hu W, Lou J-G, Ding R, Lin Q, Zhang D, Xie T (2014) Where do developers log? an empirical
study on logging practices in industry. In: Proceedings of the 36th international conference on software
engineering, ICSE-SEIP *14, 24-33

@ Springer

Empir Software Eng (2021) 26: 8 Page290f30 8

Hassani M, Shang W, Shihab E, Tsantalis N (2018) Studying and detecting log-related issues. Empirical
Software Engineering

IEEE (2020) Ieee definitions. https://standards.ieee.org/standard/610-12-1990.html. Last accessed March 23
2020

Jin W, Orso A (2012) Bugredux: Reproducing field failures for in-house debugging. In: Proceedings of the
34th international conference on software engineering, ICSE ’12, pp 474-484

Kim S, Zimmermann T, Pan K, Whitehead EJJ (2006) Automatic identification of bug-introducing changes.
In: Proceedings of the 21st international conference on automated software engineering (ASE)

Lam AN, Nguyen AT, Nguyen HA, Nguyen TN (2017) Bug localization with combination of deep
learning and information retrieval. In: Proceedings of the 25th international conference on program
comprehension, ICPC *17, pp 218-229

LaToza TD, Myers BA (2010) Developers ask reachability questions. In: Proceedings of the 32Nd
ACMV/IEEE international conference on software engineering, ICSE ’10, pp 185-194

Li H, Chen T-HP, Hassan AE, Nasser M, Flora P (2018) Adopting autonomic computing capabili-
ties in existing large-scale systems: an industrial experience report. In: Proceedings of the 40th
international conference on software engineering: software engineering in practice, ICSE-SEIP 18,
pp 1-10

Li Z, Chen T-HP, Yang J, Shang W (2019) DLfinder: Characterizing and detecting duplicate logging code
smells. In: Proceedings of the 41st international conference on software engineering, ICSE °19, pp 152—
163

Li H, Shang W, Adams B, Sayagh M, Hassan AE (2020a) A qualitative study of the benefits and costs of
logging from developers’ perspectives. IEEE Transactions on Software Engineering

Li Z, Chen T-H, Shang W (2020b) Where shall we log? studying and suggesting logging locations in
code blocks. In: Proceedings of the 35rd IEEE/ACM international conference on automated software
engineering (ASE)

Lin Q, Zhang H, Lou J-G, Zhang Y, Chen X (2016) Log clustering based problem identification for
online service systems. In: Proceedings of the 38th international conference on software engineering
companion, ICSE *16, pp 102-111

Liu B, Lucia, Nejati S, Briand LC, Bruckmann T (2016) Simulink fault localization: an iterative statistical
debugging approach. Softw Test Verif Reliab 26(6):431-459

Sliwerski J, Zimmermann T, Zeller A (2005) When do changes induce fixes? pp 1-5

Loyola P, Gajananan K, Satoh F (2018) Bug localization by learning to rank and represent bug induc-
ing changes. In: Proceedings of the 27th ACM international conference on information and knowledge
management, CIKM ’18, pp 657-665

Moore DS, MacCabe GP, Craig BA (2009) Introduction to the practice of statistics. W.H. Freeman and
Company

Moreno L, Treadway JJ, Marcus A, Shen W (2014) On the use of stack traces to improve text retrieval-based
bug localization. In: 2014 IEEE international conference on software maintenance and evolution. IEEE,
pp 151-160

Rahman MM, Roy CK (2018) Improving bug localization with report quality dynamics and query refor-
mulation. In: Proceedings of the 40th international conference on software engineering: companion
proceeedings, ICSE 18, pp 348-349

Romano J, Kromrey JD, Coraggio J, Skowronek J (2006) Appropriate statistics for ordinal level data: Should
we really be using t-test and cohen’sd for evaluating group differences on the nsse and other surveys. In:
Annual meeting of the Florida association of institutional research, pp 1-33

Saha RK, Lease M, Khurshid S, Perry DE (2013) Improving bug localization using structured informa-
tion retrieval. In: Proceedings of the 28th IEEE/ACM international conference on automated software
engineering, ASE’13, pp 345-355

Satvat K, Saxena N (2018) Crashing privacy: An autopsy of a web browser’s leaked crash reports. CoRR,
1808.01718

Schroter A, Schroter A, Bettenburg N, Premraj R (2010) Do stack traces help developers fix bugs? In: 2010
7th IEEE working conference on mining software repositories (MSR 2010). IEEE, pp 118-121

Shang W, Jiang ZM, Hemmati H, Adams B, Hassan AE, Martin P (2013) Assisting developers of big data
analytics applications when deploying on hadoop clouds. In: Proceedings of the 2013 international
conference on software engineering, ICSE 13, pp 402411

Sisman B, Kak AC (2012) Incorporating version histories in information retrieval based bug localization.
In: Proceedings of the 9th IEEE working conference on mining software repositories, MSR 12, pp 50—
59

Soltani M, Panichella A, Van Deursen A (2018) Search-based crash reproduction and its impact on
debugging. IEEE Trans Softw Eng:1-1

@ Springer

https://standards.ieee.org/standard/610_12-1990.html
http://arxiv.org/abs/1808.01718

8 Page300f30 Empir Software Eng (2021) 26: 8

Tucek J, Lu S, Huang C, Xanthos S, Zhou Y (2007) Triage: Diagnosing production run failures at the user’s
site. In: Proceedings of 21st ACM SIGOPS symposium on operating systems principles, SOSP *07, 131-
144

Wang S, Lo D (2016) Amalgam+: Composing rich information sources for accurate bug localization. J Softw
Evol Process 28(10):921-942

Wong C-P, Xiong Y, Zhang H, Hao D, Zhang L., Mei H (2014) Boosting bug-report-oriented fault localization
with segmentation and stack-trace analysis. In: Proceedings of the 2014 IEEE international conference
on software maintenance and evolution, ICSME’ 14, pp 181-190

Wu R, Zhang H, Cheung S-C, Kim S (2014) Crashlocator: Locating crashing faults based on crash stacks.
In: Proceedings of the 2014 international symposium on software testing and analysis, ISSTA 2014,
pp 204-214

Xu W, Huang L, Fox A, Patterson D, Jordan MI (2009) Detecting large-scale system problems by mining
console logs. In: SOSP "09: Proceedings of the ACM SIGOPS 22nd symposium on Operating systems
principles. ACM, Big Sky, pp 117-132

Yuan D, Mai H, Xiong W, Tan L, Zhou Y, Pasupathy S (2010) Sherlog: Error diagnosis by connecting clues
from run-time logs. In: Proceedings of the 15th international conference on architectural support for
programming languages and operating systems (ASPLOS), pp 143-154

Yuan D, Zheng J, Park S, Zhou Y, Savage S (2011) Improving software diagnosability via log enhance-
ment. In: ASPLOS ’11: Proceedings of the sixteenth international conference on architectural support
for programming languages and operating systems. ACM, pp 3-14

Yuan D, Park S, Huang P, Liu Y, Lee MM, Tang X, Zhou Y, Savage S (2012a) Be conservative: Enhanc-
ing failure diagnosis with proactive logging. In: Presented as part of the 10th USENIX symposium on
operating systems design and implementation (OSDI 12), pp 293-306

Yuan D, Park S, Zhou Y (2012b) Characterizing logging practices in open-source software. In: Proceedings
of the 2012 international conference on software engineering, pp 102—112

Yuan D, Luo Y, Zhuang X, Rodrigues GR, Zhao X, Zhang Y, Jain PU, Stumm M (2014) Simple testing
can prevent most critical failures: an analysis of production failures in distributed data-intensive sys-
tems. In: Proceedings of the 11th USENIX conference on operating systems design and implementation,
OSDI’ 14, pp 249-265

Zeng Y, Chen J, Shang W, Chen T-HP (2019) Studying the characteristics of logging practices in mobile
apps: a case study on f-droid. Empir Softw Eng 24(6):3394-3434

Zhao X, Zhang Y, Lion D, Ullah MF, Luo Y, Yuan D, Stumm M (2014) Lprof: A non-intrusive request flow
profiler for distributed systems. In: Proceedings of the 11th USENIX conference on operating systems
design and implementation, OSDI’ 14. USENIX Association, pp 629-644

Zhou J, Zhang H, Lo D (2012) Where should the bugs be fixed? - more accurate information retrieval-based
bug localization based on bug reports. In: Proceedings of the 34th international conference on software
engineering, ICSE 12, pp 14-24

Zimmermann T, Premraj R, Bettenburg N, Just S, Schroter A, Weiss C (2010) What makes a good bug
report? IEEE Trans Softw Eng 36(5):618—-643. https://doi.org/10.1109/TSE.2010.63

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Affiliations

An Ran Chen' @ . Tse-Hsun (Peter) Chen’ - Shaowei Wang?

Tse-Hsun (Peter) Chen
peterc@encs.concordia.ca

Shaowei Wang
shaowei @cs.umanitoba.ca

I Software PErformance, Analysis, and Reliability (SPEAR) Lab, Concordia University,
Montreal, Canada

Department of Computer Science, University of Manitoba, Manitoba, Canada

@ Springer

https://doi.org/10.1109/TSE.2010.63
http://orcid.org/0000-0003-3137-7540
mailto: peterc@encs.concordia.ca
mailto: shaowei@cs.umanitoba.ca

	Demystifying the challenges and benefits of analyzing user-reported logs in bug reports
	Abstract
	Introduction
	Paper Organization

	Background
	Bug Reports
	Logs in Bug Reports

	Data Collection and Case Study Setup
	Studied Systems
	Collecting and Filtering Bug Reports
	Identifying Bug Reports that Contain Logs
	Collected Bug Reports

	Case Study Results
	RQ1: Are Bug Reports With Logs Resolved Faster Than Bug Reports Without Logs?
	Motivation
	Approach
	Results

	RQ2: Are There Overlaps Between Logged Classes and Fixed Classes?
	Motivation
	Approach
	Results

	RQ3: Why do some fixed classes have no overlap with the logged classes?
	Motivation
	Approach
	Results
	Logs that show the failure but not the fault (i.e., the root cause) (266/278)
	Code evolution (12/278)

	Discussion and Implication of Our Findings
	More research and supports are needed for logging code evolution
	Reporters need additional assistance on providing logs in bug reports
	Future studies could consider using execution paths that are re-constructed from readily-available runtime data to provide additional debugging supports

	Threats to Validity
	External Validity.
	Internal Validity.
	Construct Validity.

	Related Work
	Analyzing Bug Reports for Debugging
	Debugging and Maintaining Software Systems By Leveraging Logs

	Conclusion
	References
	Affiliations

