
An Empirical Study On Leveraging Logs For
Debugging Production Failures

An Ran Chen
Department of Computer Science and Software Engineering

Concordia Univerity
Montreal, Canada

anr chen@encs.concordia.ca

Abstract—In modern software development, maintenance is
one of the most expensive processes. When end-users encounter
software defects, they report the bug to developers by specifying
the expected behavior and error messages (e.g., log message).
Then, they wait for a bug fix from the developers. However, on
the developers’ side, it can be very challenging and expensive to
debug the problem. To fix the bugs, developers often have to play
the role of detectives: seeking clues in the user-reported logs files
or stack trace in a snapshot of specific system execution. This
debugging process may take several hours or even days.

In this paper, we first look at the usefulness of the user-
reported logs. Then, we propose an automated approach to
assist the debugging process by reconstructing the execution path.
Through the analysis, our investigation shows that 31% of the
time, developer further requests logs from the reporter. Moreover,
our preliminary results show that the reconducted path illustrates
the user’s execution. We believe that our approach proposes a
novel solution in debugging production failures.

Index Terms—Mining Software Repository Data, Events Log,
Static Analysis, Production Errors

I. INTRODUCTION

In the current state-of-the-arts, there are a number of studies
on the challenges of debugging production failures from bug
reports. Saha et al. [11] based their approach on information
retrieval techniques to improve bug localization. Mills et al.
[5] tackled the challenge of analyzing bug report vocabularies
to facilitate the debugging process. Among those researches,
logs, which contain tremendous values of information, are
rarely used.

Ding et al. found that “for a majority (84%) of the failures,
all of their triggering events are logged.” [7]. However, one of
the major challenges in diagnosing bug reports relies on how
to effectively analyze the provided logs. In modern software
debugging, developers often uses grep or more sophisticated
search utilities to uncover the related context, but the debug-
ging process is still challenging [1]. It is time consuming, and
manual inspection quickly becomes problematic when dealing
with large-scale systems. In short, considering the complexity
of modern softwares, it is difficult for users to point out what
went wrong in the execution. This make the debugging task
challenging on the developer’s end, and logs are the primary
source of debugging hints that developer refers to.

In this paper, we start by analyzing the presence of logs in
bug reports. Then, we evaluate the usefulness of user-reported
logs by comparing the resolution time of bug report with logs

with those without logs. Finally, we propose an automated
approach that utilizes logs to reconstruct the execution paths.

Section II provides an overview of our experimental setup,
and a preliminary study on the presence of logs in bug reports
across different Apache Software Foundation open-source
systems. Section III discusses the main research questions
of this study. Section IV concludes the paper.

II. EXPERIMENTAL SETUP

For our case study, we have selected six open-source
Java systems: Hadoop, Hive, Camel, Storm, ActiveMQ and
Zookeeper. We select projects from Apache Software Founda-
tion for two reasons: 1) we have access to most of its code
base, version control and issue tracker; 2) the development
process of those projects is stable, and many of them are
actively maintained. The studied systems vary from virtual
machine deployment to data warehouse. Table I shows the size
of those projects in terms of lines of code (LOC) (computed
by cloc [8]).
Presence of logs in bug report: a preliminary study. To
come up with these five Java projects, we have done a prelimi-
nary study across 16 Apache Software Foundation open-source
projects. As our empirical study focuses on the effect of having
log messages when debugging, we decide to proceed with five
projects that contain the most bug reports with logs. To retrieve
the bug reports, we built a web application that performs REST
API calls to Apache Jira repositories [9]. The interface of our
tool collects bug reports based on user’s selection criteria. For
this study, we extracted the bug reports based on the criteria
of a prior study (Yuan et al. [7]).

We present the result of this preliminary study as follows.
We calculated the percentage of bug report with log over the
total percentage of bug reports. Despite the fact that only
a small portion of the reporters attach logs in bug reports
(varying between 0.21% and 8.45%), this still leaves us a
reasonable amount of bug reports to study.

III. RESEARCH QUESTIONS

We now present our research questions into two parts.
First, we want to know how helpful are user-reported logs
in the event of production failures. Furthermore, we present
our approach, which reconstructs the execution path based on
logs, so developers can easily debug and view the failures in



TABLE I
METRICS COMPARAISON ACROSS STUDIED SYSTEM WITH BRWL AS BUG

REPORT WITH LOGS AND BRNL AS BUG REPORT WITHOUT LOGS

Project LOC BRWL Total BRWL median BRNL median
BR resolution time resolution time

ActiveMQ 414k 201 4,590 2085 247
Camel 1,123k 9 4,275 137 22

Hadoop 1,691k 781 20,893 287 242
Hive 1,343k 208 11,479 188 160

Storm 278k 116 1,507 136 220
Zookeeper 92k 151 1,788 2081 453

the context of its execution. Finally, we evaluate our approach
based on our preliminary results.

RQ1: Can user-reported logs help to debug production
failures?
Motivation. Debugging for production failure can be chal-
lenging with the complexity of modern softwares. On one
hand, when debugging from a bug report, it is challenging for
developer to understand the specific unexpected behavior. Al-
though there might be contextual hints that suggest potentially
problematic areas, the nature of the failure remains unknown.
One fundamental problem is not been able to reproduce the
failure based on the provided information. On the other hand,
it is difficult for the users to report specific usage details (e.g.,
underlying environment or contextual parameters used), and
even harder to provide scripts to reproduction. Therefore, we
want to investigate the usefulness of user-reported logs in the
event of production failures.
Approach. We statistically compare the resolution time of the
bug reports with logs (BRWL) and the bug reports without
log (BRNL). We demonstrate with Wilcoxon rank-sum test
that the resolution time of BRWL and BRNL are statistical
significance. Furthermore, we also look at where were the
logs attached in bug reports. If the logs were found in the
Comments section, it is requested by the developers.
Preliminary Results. Table I shows the median resolution
time of bug report with logs and without log. We use Wilcoxon
rank-sum test to analyse if logs statistically improve the bug
report resolution time. The null hypothesis is that there is no
statistically significant difference in the value of resolution
time between bug reports with logs and the ones without
logs. We evaluate our null hypothesis for p-value<0.05 at
a confidence level of 95%. The analysis across all studied
systems outputs a p-value much smaller than 0.05, which in-
dicates there is statistically significant difference in resolution
time. The results of median resolution time shows that bug
reports with logs take more time to resolve. After initiation
investigation, we find out developer requests logs when the
failure is more complex to debug or labelled as Critical
failure. We also observe that 31% of the logs were found in
Comments section of the bug report. Those logs are attached
upon developer’s request to better understand the failure.

RQ2: Can we utilize user-provided logs to assist debugging?
Motivation. In this RQ, we intend to utilize the logs to
reproduce the execution path that leads to the reported failure.

The outcome will assist developers to debug and visualize the
possible failure locations. We implemented our approach into
an execution path reconstruction tool called LogMap.
Approach. LogMap first identifies and retrieves log messages
from bug reports using regular expression. Then, the tool
leverages static analysis technique to map each log message
to its corresponding logging line in source code. LogMap
inspects user-reported log messages and program source code
to determine which parts of the code were called during users’
execution. It matches the key diagnostic information from log
messages to static text located inside logging statements. The
output of this static analysis are a collection of mapping be-
tween log messages and log statements implemented inside the
source code. Finally, based on on this log message mapping,
we traverse through the logging lines to derive a list of poten-
tial code paths. Specifically, LogMap utilizes JavaParser [13]
to build an abstract syntax tree (AST) representation from
every Java file. It traverses through each method declaration,
monitoring all method calls inside the declaration to derive
a call graph of the paths. Specifically, LogMap follows the
implementation of Depth First Traversal directed graph [12].
LogMap analyzes the execution path by pairs of log messages
- one as the source, the other as destination. After knowing the
location of these log messages, it derives the execution paths
that the program might have taken by traversing the graph to
find a path between the source and destination vertex.
Preliminary Results. Using LogMap, we reproduced the
execution path from 20 bug reports. We manually verified
the execution path from the source code, and our approach
was able to find the correct path which connect the log
messages. Moreover, we confirmed the reproduced execution
paths illustrate the context in which the user has described.

In the continuation of our research, we intend to analyze a
research question as follows to better evaluate our approach.
RQ3: How far away is the problematic code from the pro-
duction logging statements? (i.e., in terms of the number of
non-basic code blocks between the log execution paths and
changed code). If we could justify that the number of non-
basic code blocks are not significant, it will help us to evaluate
the effectiveness of our tool. We also plan to implement an IDE
plugin that assist developers with debugging by visualizing
the reproduced execution. We plan to conduct a user study to
evaluate our approach and the implemented plugin.

IV. CONCLUSION

Our work justifies the helpfulness of user-reported logs
and provides an approach that fully utilizes these logs to
reconstruct the execution path. Our main evaluation is still
in progress, we have high expectations in our future work.
Based on the preliminary results, we will examine the overlaps
between the bug fixing commits and the identified execution
path. The outcome will confirm our approach and reveal the
advantages of such static analysis. We can see our tool to be
complementary to many of state-of-the-art log analysis tools,
such as Loggly or Logstash, and it could easily be integrated
as an IDE plugin.



REFERENCES

[1] Tse-Hsun Chen, Mark D. Syer, Weiyi Shang, Zhen Ming Jiang, Ahmed E.
Hassan, Mohamed Nasser, and Parminder Flora. Analytics-Driven Load
Testing: An Industrial Experience Report on Load Testing of Large-Scale
Systems.. In ICSE-SEIP ’17; 243-252.

[2] Saha RK, Lease M, Khurshid S, Perry DE. Improving bug localization
using structured information retrieval.. In ASE, 2013; 345–355.

[3] Min D, Feifei L, Guineng Z, Vivek S. DeepLog: Anomaly Detection and
Diagnosis from System Logs through Deep Learning.. In ACM SIGSAC,
Conference on Computer and Communications Security(CCS), 2017;
1285-1298.

[4] Tse-Hsun Chen, Stephen W. Thomas, Ahmed E. Hassan A Survey on
the Use of Topic Models when Mining Software Repositories. Empirical
Software Engineering, 2016, Volume 21, Number 5, Page 1843

[5] Chris Mills, Jevgenija Pantiuchina, Esteban Parra, Gabriele Bavota,
Sonia Haiduc Are Bug Reports Enough for Text Retrieval-based Bug
Localization?. ICSE’18 Proceedings of the 40th International Conference
on Software Engineering: Companion Proceeedings, Pages 248-249

[6] Boyuan Chen, Zhen Ming (Jack) Jiang Characterizing logging practices
in Java-based open source software projects – a replication study in

Apache Software Foundation. Empirical Software Engineering, 2017,
Volume 22, Number 1, Page 330-374.

[7] Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Rodrigues, Xu
Zhao, Yongle Zhang, Pranay U. Jain, Michael Stumm Simple Testing
Can Prevent Most Critical Failures. OSDI’14 Proceedings of the 11th
USENIX conference on Operating Systems Design and Implementation,
Pages 249-265
Tools and Benchmarks for Automated Log Parsing

[8] cloc. 2018. Count Lines of Code (cloc). (2019)
https://github.com/AlDanial/cloc

[9] Apache Software Foundation. 2018. Apache’s JIRA issue tracker. (2019)
https://issues.apache.org/jira/secure/Dashboard.jspa

[10] S. Nakagawa and I. C. Cuthill. Effect size, confidence interval and sta-
tistical significance: a practical guide for biologists. Biological Reviews,
82:591–605, 2007.

[11] Ripon K. Saha, Matthew Lease, Sarfraz Khurshid, Dewayne E. Perry
Improving Bug Localization using Structured Information Retrieval IC-
CIT’18 International Conference on Computer and Information Technol-
ogy (ICCIT)

[12] GeeksforGeeks Depth First Search.
https://www.geeksforgeeks.org/depth-first-search-or-dfs-for-a-graph/

[13] JavaParser JavaParser - For Processing Java Code http://javaparser.org/


